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FOREWORD

This report describes work performed in the Applied Mathematics Group

of the Analysis and Optimization Branch, Structures and Dynamics

Division of the Flight Dynamics Laboratory (AFWAL/FIBRD) under Project

2304NI Computational Aspects of Fluid and Structural Mechanics, Work Unit

2304N102. This is an interim report on work carried out between

August '.978 and June 1980. The author, C. L. Keller, submitted the

report in October 1980.

The author wishes to thank Dr. K. G. Guderley for many stimulating

discussions and suggestions. He thanks also Ms. Mary Lipik for her

typing and assistance in preparing this report.
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SECTION I

INTRODUCTION

In the last 10 years a number of procedures have been proposed for

determining vibration parameters of a structure from its measured

response to known excitations. The reason for this activity was due to

shortcomings and dissatisfaction with the classical phase resonance or

tune and dwell procedure.

In the past, the phase resonance method was characterized as requiring

a rather lengthy set up time. Practical limits on the number and

positioning of the shakers result in limitations on the accuracy of the

method. The desired information is obtained directly from the test.

However, obtaining satisfactory test results was a slow process requiring

highly skilled operators. Consequently, the test structure was not

available for other programed activities for a lengthy period, usually,

at a crucial time.

Accordingly, other methods were sought for which the test set up would

be simpler, require fewer excitation points, and be less dependent upon

operator skill. The desired information need not be given directly by

the test but would be obtained at a later date from the test data after

the structure was released.

For those methods for which test results are not known until some

time after the structure is released there is a danger that, due to an

undetected error in the test set up, the test data is worthless.

Frequently, in such cases it is impossible to reschedule the test until

after such a time that the main reason for the test is past.

In Section II of this report a procedure is described for computing

the complex characteristic values and vectors from the steady state

response to sinusoidal excitations at a single point. In Section III

we describe a modification of the procedure so that it can handle the

19



AFWAL-TR-80-3136

case of two close characteristic values. In a previous report,

AFFDL-TR-78-59 (Reference 1), we have shown how to modify the procedure

to handle characteristic values of multiplicity greater than 1.

We believe the procedure described in Sections II and III has most of

the advantages of the phase resonance method with most of the shortcomings

eliminated. Since it depends upon excitations at a single point the test

set up is simpler. Also, since data only in the vicinity of resonance is

used, only the frequency needs to be adjusted. The frequency adjustments

do not have to be too precise, consequently, the degree of operator skill

is of less importance.

The computations are simple. We believe the procedure can be

automated so that the final results are obtained practically on line.

Accordingly, errors in test set up, if any, should be detected early in

the allotted time for the tests, corrected and the test rerun. Moreover,

the nonlinear damping and stiffness properties can be calculated as

functions of the excitation amplitudes.

The procedure described in Sections II and III is based upon exci-

tations at a single point. However, it should be clear from the

discussion of these sections that the procedure is not limited to single

point excitation. For multipoint excitation, the quantity vkr, Equation 2,

no longer isolates a single component of the vector v k but instead, v kr

is some linear combination of the components of vk. Thus for multipoint

excitation one needs to perform sufficiently many additional independent

experiments to determine at least one (and consequently all) of the
T

components of vk appearing in the linear combination vkr. It is clear

also that this is accomplished by varying components of the vector r, v r

that is, by varying the amplitude at the set of multiple excitation points

in such a way that the total energy input is essentially constant.

Using the procedure of Sections II and III modified for multiple

point excitation does not affect the test set up appreciably. Rather, it

amounts to some additional experiments and computations which are essen-

tially of the same character as for single point excitation.
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In Section IV we describe a Newton procedure for determining the

characteristic values and make some additional remarks concerning the

iteration process of Section II. In Section V we describe the numerical

experiments which we perform to test the procedure of Sections II and III

and give the results of these numerical experiments.

In Appendices A-D we give mathematical background for the method of

Section II and for some of the other methods examined. Appendix A is

mainly results, from the theory of linear systems of differential

equations with constant coefficierts, which are helpful for the identi-

fication problem. Appendix B develops, in considerable detail, Prony's

method and contrasts Prony's method with the method of Ibrahim

(References 2-5) for determining the parameters in a sum of exponential

functions. Appendix C considers some aspects of the matrix eigenvalue-

eigenvector problem and the use thereof in Wittmeyer's method

(References 6 and 7). In Appendix D we discuss the problem of solving

systems of linear equations which may be over, even, or under determined

and the method Link and Vollan (Reference 8).

The methods for determining vibration parameters can be classified

in various ways depending upon which features are emphasized. One

rather evident category consists of those methods which determine mode

shapes and frequencies. That is, numbers X and vectors u which satisfy

the conditions, either

[2 M + XC + K]u = 0

or

2 M + K]u = 0

A second category consists of those methods which determine the mass,

damping and stiffness matrices M, C and K directly. The second category

appears to consist of variants of the Link and Vollan method and the

"ill-conditioned" method described in Appendix D. Thus most methods

belong to the first category.

3
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Many methods use the frequency response function (Equation A38) in

some way or other. The frequency response function can be written in

different ways depending on how the characteristic vectors are normalized

and which vibration parameters are displayed.

The method discussed in References 9-13 computes (a column of) the

frequency response function matrix from the response to excitation of

impulse or random type. The procedure uses fast Fourier analysis

methods (Equation A28) and is highly automated. In this procedure the

frequency response function is obtained numerically, that is, as a set

of number pairs. The second entry of this number pair is the "value"

of the frequency response function and the first entry is the frequency

w to which the second entry corresponds. Lastly, the parameters in the

frequency response function are determined, usually, according to the

least squares criteria. Thus advances in electronics, in sensing and

recording equipment and minicomputers, havemade a complicated procedure

economically practical.

Hence the fast Fourier analysis procedure discussed in References 9-13

uses broad band excitation to produce a transient response. From the

Fourier analysis of this experimentally obtained data one obtains the

frequency response function (numerically). Finally, from the "fit"

of the expression for the frequency response function to the experimentally

determined values of the frequency response function one obtains the

complex mode shapes and frequencies,

The method of Section II is based upon the frequency response

function matrix and its properties also. The complex amplitude y of

the steady state response y exp (iwt) to the harmonic excitation r exp

(iwt) is, essentially, the value of the frequency response function

corresponding to the frequency w. From knowledge of the nature of the

frequency response function we choose a set of frequencies w and obtain

the values of the frequency response function corresponding to the set

of frequencies w. These values of the frequency response function are

obtained experimentally as the complex amplitude y of the steady state

4
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response to the harmonic excitation r exp (iwt). The set of values of

the frequency response function, so obtained, are used to set up a

system of nonlinear equations for the parameters (coefficients) of the

frequency response function. The complex mode shapes and frequencies

are obtained as the solution to this nonlinear system of equations.

The method of Wittmeyer (References 6 and 7) is yet another method

based upon the frequency response function and its properties. This

procedure is a method for solving a matrix eigenvector-eigenvalue problem

appropriately modified to be applicable to the ground vibration test

problem. Matrix eigenvector-eigenvalue methods are iterative procedures,

generally. The experimental data is obtained from multipoint sinusoidal

excitation. One alternates between experiment and computation. The

current approximation to the eigenvector (being determined) is obtained

from experiment. If this approximation is not satisfactory an improved

excitation vector is computed from the experimental data and the

experiment repeated.

The method of Link and Vollan (Reference 8) determines the damping

and stiffness matrices directly from steady state response to sinusoidal

excitation data. (The mass matrix M usually is assumed known.) This

procedure uses the same kind of data as the method of this report. The

damping and stiffness matrices C and K are obtained as the solution to

a system of linear equations.

Using the pseudo or generalized inverse, if necessary, the linear

system of equations is solvable for the matrices C and K regardless of

whether the system of equations for C and K is over, even or under

determined. Of course, if the system is under determined then the

matrices C and K are even less well known.

An adequate number of linearly independent conditions are needed

for a strict solution for the matrices C and K. Equation A29 shows the

relation of the matrices M, C and K to the frequency response function.

Equation A29 also shows that linearly independent conditions are obtained

at, or near to resonance frequencies.

5
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Ibrahim's method (References 2-5) determines the complex eigenvectors

and frequencies from the free response of the system. Two matrices are

generated from the data obtained from the free response sampled at equal

time increments. The complex mode shapes and frequencies are obtained

from the eigenvalue and eigenvector solution to the generalized

eigenvalue-eigenvector problem associated with these two matrices.

The method produces an equivalent model for the structure. That is,

it produces a model which has the same eigenvectors as the structure.

However, since no particular normalization is required or enforced, the

mass, stiffness and damping matrices cannot be determined by the method;

at least, not without some additional experiments and computation.

The phase resonance method has also made use of the development iin

computers and visual display techniques to bring about improvements in

the method. The indicator function, basically, is the sun of the

magnitudes of all the in phase amplitudes at all the measurement points.

With the on line computation and display of the indicator function an

operator can see immediately the effect of a change in amplitude at an

excitation point or the effect of a change in the excitation frequency.

The phase resonance method is still widely used in ground vibration

tests.

6
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SECTION II

DETERMINATION OF THE CHARACTERISTIC VALUES AND VECTORS

In this section a method is described for determining the parameters

in an expression for the frequency response function matrix from the

steady state response to sinusoidal excitations. The quantities

determined are the characteristic values Xk k=l, .., m, the corresponding

characteristic vectors uk and the corresponding characteristic vectors

v k of the transposed system. (The notation, conventions and results of

Appendix A are assumed as being familiar throughout this report.)

The method described here is essentially the same as in Reference 1.

However, in Reference 1 vectors were treated as single entities. That

is, very little attention was paid to the individual components except

for two instances when the fact was used that one could assume a special

value or special values for a component or several components. Here, in

order to display certain features with clarity, the process is described

in terms of a scalar component.

The frequency response function parameters will be determined by an

iterative process. We do not have a formal proof for the convergence of

this process. However, we are able to make some observations which lead

one to believe that the process is convergent. Additionally, our

numerical experience with the iteration process, although limited, has

not indicated any difficulties, thus providing evidence that the process

is convergent under conditions sufficiently general for our purposes.

Usually, in determining the characteristic values and vectors, one

assumes that the characteristic values are well-separated. In this

section we make this assumption also. In Reference 1 we showed that the

method described here could be modified to handle characteristic values

of multiplicity greater than 1. In Section III of this report, we will

show how to extend the procedure of this section so that it can handle

the case of two close characteristic values also.

7
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The procedure described in References 9-13 analyzes the transient

structural response to broadband excitation and uses the relation between

the frequency response (or transfer) function matrix and the transforms

of the excitation and response as expressed by Equation A28. The

procedure to be described in this section uses instead the relation

between the frequency response function matrix, the steady state response

to an harmonic excitation and the harmonic excitation.

It is assumed that after discretization the equations of motion of

the structure are adequately represented by a system of equations of

the form

Mx + Cx + kx = f (1)

Here M, C and K denote the mass, damping and stiffness matrices

respectively. M, C and K are taken as square matrices of order m. In

addition, these matrices are usually assumed to be symmetric. The

components of the vector x usually are displacements at stations on the

structure.

The steady state response of a system of equations of the form of

Equation 1 to an harmonic excitation f(t)=r exp(iwt) is x(t)=y exp(iwt).

Here r and y denote constant vectors. The frequency response function

matrix and the vectors r and y satisfy the condition

" n ukV Tr

y = Z ukvk (2)

k=lw k

(Equation A38). The vector y is determined experimentally in some way from

the steady state response to the excitation r sin wt. One possible way

is from the system of equations (Equation A37). The vector r, of course,

is chosen, usually with only one component differing from zero. This

is the component corresponding to the station on the structure at which

the excitation is applied.

The frequency response function matrix may be written in various ways.

The particular form is a consequence of the normality conditions imposed

-f8
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on and satisfied by the characteristic vectors uk and vk, k=l, ... , m.

For characteristic vectors which satisfy the normality condition

expressed by Equation A13, the frequency response function matrix takes

the form given in Equation 2. It should be clear that one does not need

to know the vectors uk and vk normalized so that they satisfy the

condition (Equation A13). Rather uk and vk are determined so that

Equation 2 is satisfied and when so determined, then the normality

conditions (Equation A13) are satisfied also.

This enforcement of the normality conditions enables one to determine

the matrices M, C, and K after the quantities Xkv Uk and vk are

determined. Thus after Ak, Uk and vk are determined so that Equation 2

is satisfied for the steady state response to any harmonic excitation,

the relations expressed by Equations A22, A24 and A25 hold. It should

1not be inferred that these relations will be used directly in computing

M, C and K. Rather some relations derived from Equations A22, A24 and

A25 or the procedure given in References 12 and 1 may be more efficient

for computing these matrices.

From Equation 2 it is clear that for a vector r with only the pth

component different from zero, the vector y is this pth component times

the pth column of the frequency response function matrix. It follows

then that the jth component of the vector y is a complex valued function

wj() of the form

m mwji(w) = kZ b jk/(iw-X k) + kZ b jk /(iOo-x k )  (3)

k=l ' ~ k=l

If the bjk and A k are not known, then the expression for the function

wj(w) contains n=2m unknowns. To determine the bik and Aks n independent

conditions are needed. These n conditions are provided by the values of

wj(w) corresponding to n distinct values of w. We will show that if we

know wj(w) for n judiciously chosen values w = wp, p=l, ..., n the

resulting system of nonlinear equations is readily solved for the Xk

and bjk by an iteration process.

9
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In Figure 1 we have plotted in a complex plane values of a function

w(w) of the form expressed by Equation 3 for values of w ranging from 0.5

to 12 at increments of 0.05. Figures 2 and 3 are plots of values of the

magnitude and argument respectively of the same function for the same

range of values of w. These figures display the features which charac-

terize functions w.(w) of the form expressed by Equation 3. The

appearance of Figure 3 is determined by the range of values selected

for the argument of a complex number.

From Figure 2 it is observed that the local maximum of Iw(w)I occurs

at some value of w close to Im[Xk] for k=l, ..., m. From Equation A36 it

follows that Iwj(w)l is the amplitude of the steady state response to r

sin wt. Also, in Figure 1, if we would label the plotted points with

the value of w to which they correspond - we would observe that w(w)

changes most rapidly when w is close to Im[Ak]. That is, in Figure 1

the values of w(w) for which w is close to Im[Xk] are those points which

are connected by rather large straight line segments.

From the above observations it is clear that we may suppose that n

values of w and the corresponding vector y are known in pairs, say

and wm + p, with corresponding vectors yp and ym + p, for p=l, ... , m.

The values of w satisfy the conditionsP

w < Im[X ] < W (4)
p p M+ p

And the difference wm+p -w is small relative to the differences

Lp + 1 - wM + p and wp - wm + P - l. Hence the value of the complex

function wj(w), which represents the jth component of the vector y(w),

is known for n values of w.

It was noted above that the system of equations obtained from Equation 3

when w(w) is known for n values of w is nonlinear. We will now describe

an iterative process for determining values of Xk and bjk which satisfy

the system. Set

m-
w (w) = Z (bjk k/ .+ (ia-Tk))'+ Bp/(iw-5p) (5)

k~p

10
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Then b.p /(iw-x) : w.(w) - W^ (w) 
(6)

Solving Equation 6 for b. we obtain therefrom the equality

Ow p- j)Wj(W p jp p)] = (iwm+p-Xp)[Wj(wm+p) - Wjp(wm+p) ]  (7)

These equations, Equation 7 solved for and Equation 6 solved for b.

are the basic equations of the iteration process.

We show next how to determine starting values or initial approximations

for Xp and b jp. The principal observation is that if w p and wm + p are

close to Im[A then, from Equation 3
p

wj(Wp) = b jp/(iw p- ) approximately

and

wj(Wm+p) = bjp/(iwm+p-xp) approximately.

Hence

wj(W p )/wj (m+ p ) =(im+p-x p)/Wp- X p

which is readily solved for Xp, see Equation 10 below. Alternatively,

from Equation 7 we obtain

p[w(m+p) - wj(wp) (w ^ p w ))] =

- (W m+p ) - jp (W p M (8)

iwp[Wj(Wm+p) - w (w -( p mp jp)p

+ i(wmsp - p)[Wj (wm+p) - jp(wm+p)]

I11
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From the graph of Wp (w), Figures 4 and 5, it is evident that

w p( )m+p  - . (w p) is small, especially if Wmm + p - Wp is small. Hence

neglecting the difference jp (w ) - jp( p), Equation 8 can be

written as

Xp [Wj (um+p) - wj (Wp)] iWm+pWj (wm+p) -ip p - i(W - i(Wm+pp)Wjp(Wm+p) (9)

Also, if wm + is small and (wm+ p) is not too large, we may

neglect the last term of Equation 9 and we have as the equation for an

initial value for A
p

Xp = i[m+pWj(wm+p) - pWj(wp)]/wj((%,m+p ) - w.(Wp) (10)pJ p p

Next, neglecting the term wp (w) in Equation 6 the starting value for b.p

is given by

b p (iW p-Xp)W (p) (11)

Thus, from Equations 10 and 11 we can determine initial approximations

Ap and bip for p=l, ..., m and for j=l, ..., m. These initial values

depend on the function w.(w) at n points wp and wmM + p for p=l, ..., m.

Once these initial values are determined, they can be used in the right

hand side of the exact equations, namely

. i[W m+p(Wj(W M+p )-w W (M+p) ) - W( ) (W p jp(W_ (2
_ ~mp pmp pj p ~pp(12)

( [W (%m+p) (W ) - wj(wp) + ̂  (W)
jpm+p Zpjp p

and

bjp j (wj(W p Wjp iP p p O ) (13)
P

to obtain better approximations for A and b. for pl, .... m and j=l,

m. The values of X and b. so obtained can then be used again in

Equations 12 and 13 to compute still better values of Ap and bjp and so

on until prescribed tolerances are satisfied (or a fixed maximum number of

iterations completed).

12
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Performing the computations described, Equations 10, 11, 12 and 13

determine vectors bk, k=l, ..., m where bk has components bjk for j=l,

m. Hence from Equation 2 we have

ukvTr = bk (14)

For the case where the matrices M, C and K are symmetric, excitation at a

single point is all that is needed to determine the vectors u k and vk;

since vk is just some scalar multiple of uk. Thus we may take

r (15)
r = r el l5

where e1 denotes the coordinate vector with first component 1 and all

other components zero. Moreover, we may suppose the vectors uk normalized

so that the first component of uk has the value I.

uk= 1 (1 6)U lk

Then from Equation 14 we have

T r = b
vkr rVlk lk

I .oor

(17)

and for j t 1

ujk : b jk /blk (18)

and
Vjk Vlk " Ujk (19)

In order to describe the process for the nonsymmetric case, it is

convenient to modify slightly the notation used in the symmetric case.

Let us denote the vectors bk by bk(1). The 1 in parenthesis indicates

that the vectors bk(1) are determined from data obtained by exciting

Equation 1 at station 1. If we had excited Equation 1 at station q with

the same set of frequencies as used at station 1, then from the associated

response we could have determined vectors bk(q) in exactly the same way

13
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(using the same equations) as the vectors bk(l) were determined.

However, we will see that it is not necessary to determine the vectors

bk(q) for k=l, ... m, and q=l, ... , m completely.

Nevertheless, for the moment suppose that at the same time Ak and

bk(1) are being determined iteratively we compute also bk(2), ... , bk(m)
for k=l, ... , m. For the nonsymmetric case only Equation 19 does not
hold but from Equations 16, 17 and 18 we determine from the vectors bk(l)

the vectors u and the component vlk of vk for k=l, ... , m. Thus we

need the remaining components of the vectors vk.

For the vectors bk(q), for k=l, ..., m we have the relation

T A 20ukvTke r = u k vqkr b bk(q) (20)Ukvk eqr~uq ~~

In this vector equation there is only one unknown, namely, the scalar

vqk. From this it is clear that all we need to determine the scalar vqk

is one component of the vector bk(q) for k=l, ... , m.

In order to summarize the information required for the nonsymmetric

case let us rewrite Equation 2 as

n ukv e r
y(w,q) = E k k q (21)

k=l iw-Xk

Let w.(w,q) denote the jth component of the vector y(w,q). Then in place

of Equation 3 we have

m

wj(w,q) = E (bjk(q)/(iw-Xk ) + bjk(q)/(iw-Xk))
k=l k k(22)

For the nonsymmetric case we need the values wj(W ,l) and w.(wm + p,l) for

p=l, ... , m for each value of j for j=l, ... , m. We need also w.(W ,q)

and w.(Wm + p,q) for p=l, ... , m for each value of q for q=2, ... , m but

only for one value of j.

14
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As in the symmetric case set

m (23)
w p (w,q) : jp (q)/(iw-5p) + Z (b k(q)/(i-Xk + -jk(q)/(i--k)

k#p
Then

b p(q)/(iw - X ) w.(w,q) - w (w,q) (24)
P 3 ip

And we obtain therefrom

OWp-Xp )[w(i(Wq)-wp (W ,q)] :(iLm +p -p[wj(wm+p,q) _ W(m+p,q)] (25)

The starting values for Xk are computed from

X = i[M+pW(WM+pl) - w IW ))]/[W.(W ,l)- w.(W ,l)] (26)[W~ (mpl Pj j(p ]~j(rm+pl (Up,

for any convenient value of j for p=l, ... , m. The starting values for

b. (1) are computed from• 3p

b jp (1) (ip -X p) w(WP ,l) (27)

for p=l, ... , m and for j=l, ... , m. Starting values for b p(q) are

computed from

b p(q) (iwp - X p) wj(w ,q) (28)

for say j=l and for p=l, ..., m and q=2, ... , m.

Once we have approximations for Xk and bjk(q), the function w. (w,q)

can be evaluated at wp and wm + p. Improved values of Xk can then be

computed from the equation

i[,m+p (w j(m+p,l) - jp(m+pl)) W p (Wjp p] (29)

X ~ jp m-Pp 3 p jp pPiq [i(wt.+p,) - P Wp(wM+pl) w w(Wp1l) + p(Wp l)]

~15
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for any convenient value of j and for p=], .... m. Improved values of

bp (1) are computed from the equation

bjp(1) = (Wj(Wp l) - jp(Wp l))(iWp p (30)

for p=l, ..., m and j~l, ..., m. Similarly, improved values of b jp(q)

are obtained from

b p(q) = (w.(w ,q) - jp(W pq))(iw p X ) (31)

for say j=l, p=l, ..., m and q=2, ..., m. The values of X p and b p(q)

obtained from Equations 29, 30, and 31 are used again in these equations

to obtain improved values and so on until tolerance requirements are

satisfied or a fixed number of iterations completed.

From the values of bjk(q) obtained from the above computations we

now compute

•Vlk =blk(1)/ 32

for k=l, ...,m. 
Next

jk= bk(l )/blk(l) (33)

for j=2, .... m and k=l, ..., m. Recall

u 1 (34)

for k=l ... , m. Then

vqk = blk(q)/ (35)

for q=2, .... m and k=l, ... , m. It is clear that the value of ^ in

Equations 32 and 35 could be different for different values of the

index q.

16
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SECTION III

TWO CLOSE CHARACTERISTIC VALUES

In this section we describe a modification of the procedure given in

Section II which enables us to handle the case of two close characteristic

values. In order to describe this procedure we consider a complex

valued function w(w) of the form
2

w(w) = E (bk/(iw - Xk) + bk/(iw - Ak))
k=l (36)

The problem is, as in Section II, the determination of the A k and bk;

but complicated by the fact that A1 and A2 are close. Hence, for example

we may not neglect the term b2/(iw - X2) when w is close to Im[ 1].

First, we want to make clear the relation of the function w((,)) of

Equation 36 to the frequency response function and the iteration process

of Section II. Thus w(w) denotes the value of the jth component of the

frequency response function, that is, the function wj(w) of Equation 3

with all the terms for k > 2 either ignored as a first approximation in

the iteration process or subtracted off for the succeeding steps of the

iteration process. The subscript j has been left off for notational

simplicity.

Set w(w) = w() - b/(i - 1 - b2 /(iw - 2.)(37)

that is
w() = bl/(iw - X1 ) + b2 /(i - 2) (38)

We suppose w. = w(Wj) is known for four values of w. close to Im[A l] and

to Im[A 2]. Using this data, Equation 38 becomes a system of four

equations for the four unknowns bl , b2 , A1 and A2. The unknowns b and

b2 are easily eliminated from this system. In doing so one obtains

two equations for A1 and A2. We will now give some of the details.

17
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Solve Equation 38 for b

b = wbw2 - X b2OW - -2 )  (39)

then subtract Equation 39 for j f 4 from Equation 39 with j 4 and

after some rearranging and simplifying obtain

ib( 2 [i(wj 4) - x(W j  w4)]P(2, j, 4)/(w j 4 ) 40)
L33- 4 4 lj

where

P(k, j, 9) 2k - i(j + W) - W (41)

for £ = 4 and j = 1, 2, 3; that is, a system of three equations for the

unknowns b2, X1 and X2. Clearly, b2 is readily eliminated from

Equation 40 leaving us with a system of two equations which we can write

in the form

Q(w -ww 4)P2, j,
- w4)P(29 3, 4) (w 4 )P(2, , 4

L 4 3 - W4 - ~ (42)

(w3w3 - u4w4 )P(2, 3, 4) (wjwj - w4w4 )P(2, j, 4)]

W - W W - W
4 3 4 j

for j 1, 2.

Observe that AI occurs linearly in this system of equations. Hence

A1 could be eliminated leaving a single equation of the fourth degree in

X2" This resulting polynomial equation could be solved for A2 and, of

course, we would have to choose the correct root. Thus taking wj : w(W.)

as a first approximation we could determine X2 as described, compute A1
from Equation 42, b2 from Equation 40 and b1 from Equation 39. In this

way one obtains starting values for bl , b2, A1 and A2. These initial

18
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values for bI , b2 , A1 and A2 can be used in Equation 37 to compute better

values of w. for j = 1, 2, 3, 4 and the procedure just described for3
calculating A2, A1 ' b1 and b2 repeated.

Since solving a fourth degree polynomial for X2 and selecting the

appropriate root is not an attractive procedure, we sought an alternative.

Let us make two observations. First, if X2 is known then Equation 42

uniquely determines A1. Secondly, if we had first eliminated b2 and then

b we would have obtained Equation 41 with the roles of X1 and X2

interchanged; so if we know X1 then X2 is uniquely determined. All the

equations needed for treating the case of two close characteristic values

are now available.

We do not feel that we have sufficient numerical experience to give

a rigidly fixed recipe. However, of the various alternatives which we

tried the procedure which we describe next seemed best. We assumed an

initial approximation to A2. From Equation 41 we compute

P(2, j, 4) = X - + t 4)A2 - jW4  (43)

for j 1 and 3. Th2n from Equation 42 we have

W [ - w4 )P(2, 3, 4) (wI -Iw)P(2, 1,4

1 4 - '3 c4 - 1W

(44)

i 3 -3 ."4w4 )P(2, 31 4 ) 1W1 4 w4 )P(2, 1, 4

4 3 4 1

which is easily solved for A1. Now that AI and X2 are known we use

Equation 40 to compute b2, Equation 39 to compute bI and Equation 37 to

obtain improved values of w. for j = 1, 2, 3, and 4.

19
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Next we compute

P(0, j, 1 ) + i - W (45)

for j = 2, 4 and then solve

X2 [(w2 -wl)P(l, 2, 1) (w4 - wl)P(l, 4, 1)1

L l 2 Wl - w4

(46)

(W 2 2w 2 - Wl)P(l' 2, 1) (w4w4 - wlw)P(l, 4, 1)

1 W 2 wl - 4

for X2. Now th't a new value of X 2 is available we use

- ) [i(Wj j - - w 1 -1 2 (w. wl)] P(l, j, l)/(wj - wl) (47)

with either j = 2 or j = 4 to compute bI and

b2  w(i. -W2O - bl(i 1 - A2)/(J1 - A1) (48)

again with either j = 2 or j = 4.

In the procedure described above we have assumed

0 < Im[l] < Im[A2 ]

and

"I < W3 < W2 <W 4 "

It also seemed better to perform two successive updates of the close

characteristic values and their associated coefficients for every update

of the well separated characteristic values and their associated

coefficients, at least in the later stages of the iteration process,

20
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S CTION IV

THE FREQUENCY RESPONSE FUNCTION BY NEWTON'S METHOD

In Section II we described the determination of the frequency

response function from experimental data by an iteration process. In

this section we describe the determination of the frequency response

function by Newton's (iteration) method. The method of Section II and

the Newton method are not too different from one another.

For simplicity we leave off the subscript denoting the component of

the frequency response function (Equation 3). The problem is, as in

Section II, the determination of the unknowns bk and X k in the function.

m

w(w) Z [bk/(iw-xk) + bk/(iw- k)] (49)
k=l

from values w. = w((w) for j=l, ..., n=2m.

Set

I m
W(L,, bI, AI, . .. b, Am) = Z bk/(i,-Xk) (50)

k= 1

W(w, bl, l .... b m , A m) is a function of the variables w bi, Alt ....
mm mbm5 Am' Suppose we know

W. = W(Wi b, ... bm , A) (51)

for n values of j and we have some initial "guess" b, 0 1, .... bm°,

° for the values bi, X1  ..., b A * Then from Equation 50 we can
m m m
compute

W° = W(, bc, , ... , Ab ) 5))

"" m (52)

for J=l, .... 2n and from the system of equations

w (53)bI dbl + W dXl + "' + a-m  db m + d m W ?-W

1  + ~ 1  +M + m

21

I



AFWAL-TR-80- 31 36

for j=l, ..., n we can determine the increments dbl , dX], .... dbm, dAm
for improving the approximations b', A', ... , b A Thus• m' m "

b' (new) b0 + db

k k bk
and (54)

X0 (new) X' + d k

In the system of equations defined by Equation 53

aW/@bk /iWj - XA) (55)

and

W/axk = b'/(iw X0) 2  (56)

In the practical situation we do not have the function values W.

but have instead the function values w. Hence we replace W. in the

system Equation 53 by
m

Wj wj bo/(i(. j - X') (51)

k=l

The initial guess for the bk and Xk is obtained in the same way as

in Section II. The main difficulty with this process is solving the

n by n system of complex equations, Equation 53, for each iteration step.

At this time we believe the method of Section II will involve fewer

computations even though it may require more iterations. The Newton

process given here is for the case of well separated characteristic

values only.

Here now we re-examine briefly the procedure presented in Section II.

We can simply the notation and still illustrate the main features if we

consider, as above Equation 49, a single complex valued function. We

suppose the value w(w) given for 2m values of w. Thus we take

w(Wj) = wj (58)

w(Wm+j) = wm+j

22
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for j : 1 ... , m. We suppose

j < Im [X ] < Wm+j (59)

and that the difference 'm+j - j is small. The problem is the same as

above, namely, solving the resulting system of equations for the m

coefficients bk and the m characteristic values Ak"

For the 2m values of w the associated system of equations, Equation 49,

is nonlinear in the Xk" The first step in the solution process is to

rewrite this system of equations. Set

m
Wj : b./(iw.-X.) + l[b /(iOw- k) + bk/(iwj-Ak)J (60)

kfj

Wm+j is defined similarly.

The system of Equation 49 now appears as

w jb.j(iwj-X.) + W.

Wm+j = bj/(iw m+j -X) + W (61)

for j=l, ..., m. For a fixed value of j the two equations in the system,

Equation 61, can be solved for A. and b. We have

j:i[ m+jWm+j- Wjw i - 1.' -(j U - w- - 11j)]

(62)
bj = (w. - Wj)(iw. - X.)

for j = 1, ..., m. Now then let us regard the A. and b. as variables.

If we substitute in the right hand side of Equation 62 values Aio, b.o

for j = 1, ..., m we will obtain say values Ajl' bj,' for i = 1, .... m.

Thus the system of Equation 62 transforms a set of 2m complex numbe's

into a set of 2m complex numbers. The desired solution is a set of 2m

complex numbers which transform into the same set of complex numbers

respectively.

23
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In Section II we take b1 = ... = b = 0 initially. For this

particular assignment of the coefficients bk it is not necessary to

specify the Xk' Then for j =1 we use Equation 62 to compute XI and b1 .

We could have computed A. and b. for j = 2, ... , m also for bI = ... =

bm = 0. Instead, we use X' b1 and b2 =... bm = 0 to compute A2 and

b2 and so on.

We would like to be able to show that the transformation defined

by Equation 62 is a contraction mapping. Then it would follow that the

iteration process of Section II converges to a unique fixed point.

As of this time, however, we have not been able to determine a region

of convergence.
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SECTION V

RESULTS AND CONCLUSIONS

In this section we describe and discuss briefly the numerical

experiments performed to test the procedures presented in Sections II and

III. From the discussion there and Appendix A the problem of interest

reduces to the determination of parameters bk and Xk which define a

complex valued function w(w) of the form

m -

w(w) = E [bk/(iw - Ak) + bkl(iw - k)]
k=l

Our first objective is to exhibit the influence of a coefficient bk,
in our case b4, on the function w(w). The characteristic values Ak and

coefficients bk used for defining functions w(w) are listed in Tables

lA-4A. The values of Ak and bk are the same in all these tables except

for b4. Since Ak and bk are complex quantities it takes a pair of real

numbers to specify them. The functions w(w) resulting from simple

modifications of the coefficient b4 are shown graphically in Figures 7a-lOa.

Figures 7b-lOb are the graphs of fw(w)f for the same modifications of

the coefficient b4. In order to facilitate comparison these graphs are

shown collectively in Figures 6a and 6b respectively.

One observes, Figure 6a, as the coefficient b4 changes from quadrant

to quadrant there is a corresponding change in one loop of the associated

graph. The remaining portion of the graph is not visibly changed. Thus

it is clear that the term bk/(i,-Ak) is the principal contributor to the

value of the function w(w) when (o is in the vicinity of Im [A k]. This

feature is illustrated further in Figures 7a-lOa where the x's are the

values of the term b4 /(i(o-A 4 ) alone as (o varies from 4.3 to 5.7 at steps

of 0.05.

In Table IA, for example, twelve frequencies (in two columns) are

listed. The corresponding function values of w(w) are listed immediately

thereafter. These function values are indicated on the corresponding

graphs, Figures 7a and 7b, by the "boxes". From these twelve function

values, using the method of Section II, the characteristic values Xk and
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coefficients bk are determined. The characteristic values and coefficient

computed from the given function values are listed in Table lB. The
"radius of differences" is the square root of the sum of squares of the

real and imaginary parts of the differences of the last two successive

calculations of the characteristic values.

Table 1A also gives "truncated" values of the function w(w) at the

listed frequencies. Table 1C gives the characteristic values and

coefficients obtained from computations using these truncated values.

Thus Table 1C shows how much the lack of precision in the experimental

data affects the computations. Tables 2A-4C show the results as the

coefficient b4 is changed. As one would expect the method of Section II

is not sensitive to changes in the coefficient bk-

Our second objective is to test the procedures described in Section III

for two close characteristic values. The data and results for this set

of problems is given in the Tables 5A-9D. The coefficient bk and

characteristic values Xks except for A6, are the same throughout the set

of problems. The characteristic value X6 gets close to A5 by letting

I m[X 6] take on the values 4.5, 4.3, 4.2, 4.1 and 4.05 successively.

In order to see the effect of X6 tending to X5 the graphs, Figures 12a-

15a and 12b-15b are collected in Figures lla and llb respectively.

One observes, in Figure lla, that as A6 tends to A5 the "circle"

corresponding to A5 deteriorates, diminishes and finally disappears. At

the same time the "circle" corresponding to X6 distorts and expands and

eventually becomes nearly circular again when A6 is practically the

same as A Similarly, the valley between the peaks associated with A55.
and X6 (Figure llb) disappears as A6 tends to A5 and the two peaks become

a single high peak when A6 is practically the same as A5.

It is clear that the behavior just described depends upon the

coefficients b5 and b6. To illustrate the role of b5 and b6 envision

what takes place as A6 tends to A5 for the case b6 = -b5.
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In Tables 5B-9B we give the results using the procedures described

in Sections II and III and the exact function values. In Tables 5C-9C

we give the results when the truncated function values were used. We

observe that with accurate data all coefficients bk are computed well.

With inaccurate data, the difference between the actual and computed

coefficients gets large particularly for the differences corresponding

to X5 and X6 respectively as X6 tends to X5"

Using the computed characteristic values and coefficients from

Table 9C we computed the function values at the given set of frequencies.

These computed function values are listed in Table 9D. Observe that the

computed function values in Table 9D and the truncated function values

in Table 9C agree very well. Observe also that graphically, in Figure 17,

the function values based on the computed coefficients from Table 9C are

indistinguishable from function values based on the exact characteristic

values and coefficient.

We believe the numerical experiments performed in Reference 1 and

this report show that the procedure, described in Section II of

Reference 1 and Sections II and III of this report, is a highly accurate

method for determining the complex characteristic values and associated

complex characteristic vectors of a light, viscously damped linear system

from the responses to sinusoidal excitations. The method as presented

in Reference 1 was capable of handling well separated characteristic

values and characteristic values of multiplicity great than 1.

In Reference I we tentatively assumed that the characteristic values

could be regarded either as well separated or identical. However, we

were concerned that this assumption might not be realistic. Accordingly

we extended the method, Section III, so that it could handle the case of

two characteristic values which were too close for the well separated

procedure yet not close enough to be regarded as identical.
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Further numerical experiments should be performed to determine more

precisely when two characteristic values should no longer be regarded

as well separated but rather as close and when no longer as close but

identical. We need also to perform numerical experiments to determine

how many characteristic values the method can handle. It is also of

interest to determine the degree of damping at which the method is no

longer reliable.
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APPENDIX A

LINEAR SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

Methods for determining vibration parameters are based on facts and

relations from the theory of linear systems of ordinary differential

equations with constant coefficients. These facts and relations are

well known, at least to the expert. In this appendix, it is our objective

to develop in a brief, yet complete fashion, these relations so that

they are readily accessible and acceptable.

Consider a second order system of differential equations

Mx + Cx + Kx = f (Al)

Here M, C and K denote real matrices of order m and x = x(t) and f = f(t)

are m-dimensional vector functions of t. The vector functions x(t) and

f(t) may have complex components.

The associated homogeneous equation

Mx + Cx + Kx = 0 (A2)

has nontrivial solutions of the form u exp(Xt) if and only if X satisfied

the characteristic equation

det[MX 2 + CX + K] 0 (A3)

and the vector u satisfies the condition

[MX 2 + C + K] u 0 (A4)

Similarly, if a vector v satisfies the condition

T 2 T T(5
[MTX + CX + KT]v= (A5)

then v exp(Xt) satisfies the transposed homogeneous equation

T-- T. TM x + Cx + K x 0 (A6)
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Throughout this appendix the symbol v is reserved for quantities

associated with the transposed equation. We will refer to values of A

which satisfy the characteristic equation, Equation A3, as characteristic

values and the vectors u and v as corresponding (or associated) charac-

teristic vectors.

The characteristic equation is a polynomial equation in A. Since

the coefficients are real, the complex conjugate of any complex root is

also a root. We suppose Equation A3 is of degree n = 2m and that all the

roots are complex with negative real pirt. We suppose also that if X is

a root of multiplicity p then the matrix [MX 2 + CA + K] is of rank m-p.

For convenience we index the roots of Equation A3 so that 0 < Im[X l]

IM[V2 ] .. Im[ m] and Xm+k Nk' for k = 1, ..., m. Let uk and vk

denote characteristic vectors corresponding to A for any value of k < m.k
That is, uk and vk satisfy the conditions expressed by Equations A4 and

A5 respectively. Then um+k = Uk and Vm+k =k are characteristic

vectors corresponding to Am+k = Ak

Orthogonality conditions are well known and convenient normalizing

relations are readily determined for first order systems of differential

equations. For these reasons we consider the first order system

xI - x 2 = 0

(A7)
Mx + Kx + Cx, = f

2 1

which i,, a system equivalent to Equation Al. This system may be written

in block matrix form as

f [= L (A8)

LO M 2. K C x2

and symbolically as

Ay + By g (Ag)
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One can readily verify ukexp(Akt), where

Uk
(AlO)

satisfies the homogeneous equation Ay + By = 0. Similarly, Vk exp(Akt)

(-l/ k ) v k(All)

Vk 
k

T- T
satisfies the transposed homogeneous equation A y + B y = 0. The vectors

u k and v k are characteristic vectors satisfying Equations A4 and A5

respectively.

From the equations XkA k + B k = 0 and x +vTA+T =0 it follows

that
kJ TA uk + T B ik =0

X V.TA k + B U k =0

On subtracting the second of these two equations from the first one

finds for j $ k, if Xj X Ak that the characteristic vectors uk and v.

satisfy the orthogonality conditions
-T

T A ik = 0 and v. B D = 0 (A12)
3 k 3 k~ A?

For a characteristic value Xk of multiplicity p > 1, the characteristic

vectors can be determined in pairs u k, Vk' Uk+l' Vk+lI .... Uk+p, Vk+p

so that the orthogonality conditions expressed by Equations A12 hold

whenever j t k.

For reasons which will be apparent shortly, we suppose the vectors

uk and vk normalized so that

T A D 1 (A13)
k

31



AFWAL-TR-80-3136

then, it follows that

~T (A14)vk B k =  k

Let U denote the matrix whose columns are the characteristic vectors

Uk" Thus

U [l" Un] (A15)

and similarly
V = [E1 "' n] (A!6)

Also let A denote the diagonal matrix having the characteristic values

I .... INn on the main diagonal. From the orthogonality and normalizing

conditions we have

V TAU = I and VTBU = -A (Al7)

Let Ae = A e(t) denote the diagonal matrix having exp(X1l).

exp(X nt) for its diagonal elements. Set

Y(t) = UA e(t)

Then one recognizes that AY + BY = 0 and also that [AUA + BU] = 0. These

facts are useful in determining a particular solution of the inhomogeneous

equation Ay + By = g. Thus we set y(t) = Y(t)z(t) and substitute this

expression for y(t) into Equation A9 we find that

AYz = AUAeZ = g

Using V TAU = I from Equation A17 we obtain as an expression for y(t)

t

y(t) = UAe(t) f A-I()VTg(T) dT (A18)

0

It is clear that y(O) and easily verified that y(t) satisfies Equation A9.

In Equation A18, use Equations A15 and A16 to replace U and V
T

respectively. Then use Equation AlO to replace the column vectors u k and
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T
Equation All to replace the row vectors vk. Lastly, use the right hand

side of Equation A8 to replace g. Thus the integrand of Equation Ai8

becomes

0expx& LI:Z:2K v] L I-ron. L(- Xn v n ( L J

Performing the indicated matrix-vector multiplications this integrand is

rewritten as the vector

(exp). 12) v1Tf(T)
-

(eXn2) TvnTf(2)

Multiplying this vector by the matrix UA e(t) Equation A18 can be

rewritten as the two vector equations

n )VT

t

xl(t) = Ek uk exp(Xkt) exp(-XkT)V f()dt (A20)

k=1 I

0

It follows that xI(t) and x2 (t) must satisfy Equation A7. From

Equation A7 i1(t) = x2 (t). If we compute i1(t) from Equation A19. we

find that

xl(t) = x2(t) + k UkVk f(t)
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and it follows, since f(t) is arbitrary, that

n 
T=E UkVk = 0 (A21)

k=l

In a similar way, we-find, since x1 (t) must satisfy the condition

Mx + Cx + Kx = f, that

n kk T  
(A22)

k=l1

Using Equation All we can write Equation A16 as

V = (A23)

then 1o lu .,.. Un
V TA U =(A24)

v/n v n 1: 1u n n

In the same way we have

F VT] VT ] 0  u . U

V(A25)

J~/ n vT K C- - lUl ... ,nUn

Equations A22, A24 and A25 show that the characteristic values X1 ....
X m and appropriately normalized characteristic vectors uI, ... , um and

v9 ..... vm determine the matrices M, C and K. Actually, Equations A22

and A25 determine M, C and K. The Equation A25 is a matrix equation of

order n = 2m. Other relations are available for determining the

matrices M, C and K.
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It follows from VTAU - I that AUVT I. Using this last equality

one can obtain the results expressed by Equations A21 and A22. With

Equation A21 and Equation A22 established in this second independent

manner, it is a simple task to verify that the time derivative of

Equation A19 is Equation A20. It is also readily verified that xl(t) as

given by Equation A19 satisfies Equation Al.

From Laplace transform theory we have for zero initial conditions

L{x(t)} = [Ms2 + Cs + K
I L{f(t)) (A26)

We also have t

L{J0 FI(t-T)F 2( )dT} - fl(s) • f2(s) (A27)

where fl(s) = L{FI(t)} and f2(s) = L{F2 (t)}. Applying the formula

expressed by Equation A27 to Equation A19 we obtain

T

L{xM(t)} = r S-k Lff(t)} (A28)
k=l SXk

From Equations A26 and A28 we see that the transfer function
n u V T

ES2 + CS + Q- kI  E k His) (A29)
k=s sKk

say.

Next we want to determine some particular solutions of Equation Al

for some simple vector functions f(t). Let e denote the vector whose

jth component is I and all other components zero. Also let h(t) denote

the scalar function satisfying the conditions.

h(t) = 0 for t < 0

= 1 fort>1
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Set f(t) = e h(t) and denote the response to e h(t) by H.(t). Replacing

f(T) in Equation A19 by e h(T) one immediately obtains for the step

response Hj(t)

.T T kVe
n n uv e e

Hj(t) = E exp(X t - E k k (A30)
k=l k k=l k

The impulse response I.(t) is the derivative of the step response, that

is,

n T
I.(tM - (H.i(t)) = Z uk Vke j exp (Akt) (A31)lj t 3H k=1

Let fj(t) denote the jth component of the vector forcing function

f(t). Then f(t) can be written as

f(t) = elfl(t) + ""- + emfm(t).

Replacing f(T) in Equation Al9 with this expression, we obtain

m t n: 1 (t = exP k (t-T)U kV T)d

xl(t) j=l 0 k=l ejfj(

From Equation A31 this formula for the response can be written as

m t (A32)
Xl(t) I~S j(t-T) fj(T)d-r

Next we take f(t) = r exp(iwt) where r denotes a real constant vector

and obtain from Equation A19

n ukmTr n UvTr

xl(t) = r kkexp(ikt) - Eexp(kt)
k=l k=l iw- ek (A33)

For complex Xk with negative real part, the second summation in Eq. A33

goes to zero as t becomes large. Hence
n u vr

y exp(iwt) = kk exp(iwt) (A34)
k~l iL-Xk

is the steady state response to the harmonic excitation r exp(iwt).
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The steady state response to r exp(iwt) is readily obtained from

the steady state response to the sinusoidal excitation r sin t. One

knows, or can readily show, that

[MD2 + CD + K) {ln[y exp(iwt)]) = Im [r exp~iwt)] = r sin wt (A35)

Now

Im[y exp(iwt)] = Re [y] sin wt + Im[y] cos A (A36)

and if x(t) denotes the steady state response to the r sin t the system

of equations

Re[y] sin wtI + Im[y] Cos tI = x(tI ) (A37)

Re[y] sin u2 + Ia[y) Cos A 2 = x(t2)

is readily solved for Re[y] and Im[y] from the recorded values of x(t)
at tI and t2, provided sin t, cos t2 - cos tI sin t2  O.

From Equation A34

n u vT r n vT
k k UkVTk -Uk ]r (A38)
kT-'k W k

The matrix on the right hand side of this equation is called the

frequency response function. Observe that it differs from the transfer

function, Equation A29, only in the term iw in the denominator.

From Equation A38 we have

n ukvTr m ukvTr

y = E 'k + Z

k=l -iu,-X k=l -iw-X

and from this equation it is clear that

n u vr
z kk (A39)

k=l -i -
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Consider next the undamped homogeneous system of equations

Mx + Kx = 0 (A40)

associated with Equation Al. We now suppose that M and K are symmetric

and that the positive definiteness condition satisfied. Then there are

values 0 < w1 < ... < wm and correspondinq real rectors Ul ...

u satisfying the condition

[-2 K] uk = 0 (A41)

It is readily shown that the vectors u k satisfy the orthogonality

conditions
-T ^T A

ujMuk = 0 and u. K uk = 0 (A42)

We will not impose any particular normalization on the vector uk at

this time.

Set

-irk exp(i' kt) = [MD 2 + CD + K] {uk exp(iwkt)}

and

irk exp (-iw kt) [MD2 + CD + K] {uk exp(-iw kt)}

On adding these two equations one obtains

(MD2 + CD + K] uk cosw kt) 
= rk sin (A43)

This equation simplifies to

k C uk = rk

for k 1, .... m. This system in matrix form is

C[u I ... um] L'0£..ii : [r, "" r-] (A44)
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Equation A44 can be solved for C and we have

AA

C = L . in 1 /w, 0 j Eu1  Ur. (A45)

0 "-1/ m ,

Set

U = Eu1  ... Um (A46)

Because of the orthogonality conditions

•MU[ a ] (A47)

diagonal matrix with diagonal entries a1 9 ..., a which must be

determined. Similarly

. TK . ". 1a

U KU .
0 [2am (A48)

Next for some value of w $ wk we have

[MD2 + CD + K) y exp(iwt) = r exp (iwt)

From this equation one obtains, since we may suppose C is known

[- 2 M + K]y = r- iwCy

Then

U [-w M + K)UU'Iy = UT(r - iwCy) = b say (A49)

Set

U 9y =

n .

, , 39
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then using Equations A47 and A48 we can rewrite Equation A49 as the system

of equations

(2w ) a zk = bk

for k=l, ... m m. Or, on solving for ak we have

ak = bk/Zk(W2 _ W ) (A50)

for k=l, .... m.

If exp(iwt) is the steady state response to the harmonic excitation r

exp(iwt) then y and r satisfy the condition

[-M + K + iwC]y = r (A51)

This system of equations can be rewitten as a system of real equations

[-M + K] Re[y] - wCIm[y] = r
(A52)

CwRe [y] + [-w 2M + K] Im[y] = 0

We have also from Equations A41 and A32

T

Tkk H(iw)r (A53)

k=l iw-Xk

From this equation we have

.. ,Rery] =Re[H(iw)]r

Im[y] = Im[H(iw)]r 
(A54)

If we examine Equation A52 and A54 together we are able to observe

an important relation between the transfer function (or better the

frequency response function) of Equation 1 and the natural modes and

natural frequencies of the associated undamped system. Suppose w = wk is

a characteristic value of Re[H(iw)] and r is a corresponding characteristic

vector, that is

det[Re(Hiw1k)] 0
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and Re[y] = Re[H(i'wk)r 
= 0

Now the vector y determined from Equation A54 by r and wk must satisfy

Equation A52 and, in particular, since y = i Im[y] it follows that

[-W2 M + K) y/i = 0

Hence y/i and y are characteristic vectors associated with the character-

istic value wk*

Conversely, if w = wk and a real vector which we denote by Im~y]

satisfy the condition

[-W M + K] Im[y] = 0,

then from Equation A52 we infer Re[y] = 0 and r = -w kC Im[y]. Since these

quantities must satisfy Equation A54, it follows in particular that r

satisfies the homogeneous equation Re[H(iwk)] r = 0. Hence wk satisfies

det[Re[H(iwk)] 0=  .
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APPENDIX B

INTERPOLATION WITH EXPONENTIAL FUNCTIONS

In this section we give the mathematical background and details of

some procedures for determining the "amplitudes" a k and the "complex

frequencies" Xk of a function x(t) of the form

n
x(t) = Z akexp(Xkt) (B)

k=l

from the values of the function. The function x(t) may be either a

scalar or vector function of t and, accordingly, the ak denote either

scalar or vector constants. We consider first the case where x(t) and

the ak are scalars.

Set

nk = exp(Xkh) (B2)

then for j = 0, ..., n, we have the system of (n + 1) equations

n .i (B3)

x(t + jh) = E nk akexp(xkt)
k=l

which can be written in matrix form as1"
.x (t ) - ... -I

x(t + h) - nl "-nn aIexp(t) 1 (4)

Lx(t + 1h nJ - n  a nepnt

Now the relation expressed by Equation B4 holds if and only if the

coefficient matrix is singular, that is, the determinant of the coefficient

matrix is zero.
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Let A, denote the cofactor of the element x(t +jh). Expanding the

determinant of the coefficient matrix in terms of the elements of the

first column we obtain.

x(t+nh) + (An/An+,) x(t+(n-l)h) + ... + (A1 /An+l) x(t) = 0 (B5)

Hence, a function x(t) as given by Equation BI satisfies an nth order

recursive relation or difference equation of the form given by

Equation B5. If in the matrix of Equation B4, we replace x(t),n
x(t+nh) by 1, n..., n respectively, we observe that the coefficients

A n+lk/A n+ are the elementary symmetric (root) functions Pk(nl, n n ) .

P= -(nl + +n )n

P2 =  l2 + "'" n ln n + 2n3 + + n2nn + + Tn-lnn (B6)

Pn n()n

Set

cj A j/A n+1  (B7)

for j=l, .... n and set

Xjk = x(tj + (k-l)h) (B8)

for j=l, .... n and k=l, ... , n+l. Thus, if we know the value of x(t)

at times t.+(k-l)h, then from Equation B5 we obtain the system of equations

nx1  . xl- I l lI x n+11

x nI x nmj cn L-xn n+lJ

for the coefficients cI, ... , c n.

Suppose Equation B9 has been solved for the coefficients cI  ... , cn .

We can determine next the complex frequencies Xk" First, one solves the

polynomial equation

,n + Cnn -l + ... ,+ c I = 0 (BO)
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for the roots n , ... , nn. Set Pk = Inkl and ak = arg (n ) where

0 < Ok < 2Tr then

k = exp[log Pk + i(ek 
- 2jn)] (811)

and X k is given by the equation

hAk = log Pk + i(ek ± 2jw) (B12)

It is clear from Equation B12 that Ak is not uniquely determined from nk .

However, in the practical situation the appropriate value of Xk is

usually clear.

The only task remaining is the determination of the amplitudes ak.

From the first n equations of the system given by Equation B3 we have

[1 11 alexp(Xlt) x(t)

l nn a2exp(2t ) x(t+h) (B13)

n - n-l aneXp( t J(t+(n-1)h
It is clear that this linear system of equations is solvable for the

amplitudes ak, provided the coefficient matrix is nonsingular. However,

the particular form of the coefficient matrix lets one use a special

method for solving this linear system of equations. Let Aik denote the

cofactor of the (j,k)th element of the Vandermonde determinant. By

Cramer's Rule

n n k-i (B14)

ajexp(Xj t) = E x(t+(k-1)h)Akj)/( E A kj)
k=l '~k=l j k

Dividing both numerator and denominator of the right hand side of this

equation by A nj one observes that the ratios Akj/Anj are the elementary

symmetric (root) functions of the nk' s, excluding r). This observation

is the basis of the algorithm given in Reference 14 (page 275) for

computing the amplitudes a.. In order to see clearly how this algorithm3
was obtained we need to make several more observations.
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Set

f(n) : (r1-r I) ... ((n-n)
(B15)

=nn +Pln- + + Pn

then the denominator

(B16)
n k-A/A

k=l i

f/(ri-n) = [f(n)-f(rj)]/(n-nj) :

c i in-l n-2 n-2. n-I+ n2n3n2
(r,n-+n-2j+ ... + n +r3 ) pl(n+n + ... +r.-) (B17)

+P2( ) + n-

Collecting terms in like powers of n we obtain from Equation B17

f/(n-nj) = n- l+(rj+P,l n-+(,,j+Plqj,+P2),nn +3+jPlj+2 j P),n BI+

cir/ ij 2j ri' ~j j + 3 (B18)

., n-. n-2 n-3 )J ... (r-j +Pfl.j +P2qj +"' P-
i i 2-l

The coefficient of ri k-in Equation B18 is equal to the ratio Ak*/Anj for

k=l, ..., n. Hence, if, in Equation B18, we replace n n - k by x(t+(n-k)h)

for k=l, ... , n and collect like terms in powers of qj, then we can express

a exp(N t), Equation B14, as the quotient of two polynomials evaluated

at n j. We have just described the numerator of this quotient. The

denominator is given by the derivative df/d, evaluated at nj. This

completes the derivation of the algorithm given in Reference 14 (page 275).

It is clear that if x(t) is a vector function and the a k are vector

constants to be determined we could apply the algorithm described above to

determine the jth component of the ak s, for j=l, ..., m. That is, an

equation of the form of Equation B13 has to be solved for each component.
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Recently, (References 2-4) another method has been proposed for

determining the parameters occurring in Equation BI. Let us write

Equation B13 as

x(t) a ... a n  exp(X1t)I

x(t+h) a1,1n annn

(Bi9)

x(t+(n-l)h) n-1-

a ... annn exp(Xnt).alnn n nn

Denote the column vector on the left hand side of Equation B19 by y(t),

the column vector on the right hand side by e(t) and the matrix by A.

The Equation B19 can now be written as

y(t) = Ae(t) (B20)

Let N denote the diagonal matrix whose diagonal elements are

Then

e(t+h) = Ne(t) (821)

and

y(t+h) = ANe(t) (B22)

If the matrix A is nonsingular, Equation B20 can be solved for e(t) and

we have

y(t+h) = ANA-y(t) (823)

One observes the Vandermonde determinant in the determinant of the matrix
in Equation B19. Hence, it is clear that A is nonsingular if the

I n all differ from one another and zero and aklO for all values
of k. Note that Equation B5 and Equation B23 are equivalent statements

of the same problem.

Suppose for n values of t, tI < ... < tn the vectors

Yj = y(tj) (B24)
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and
zj = y(tj+h) (B25)

are known. From Equations B24 and B20 we obtain the matrix equation

[Yl ... Yn] = A[e, ... en] (B26)

This equation can be written symbolically as

AE (B27)

In a similar fashion we obtain from Equations B25 and B22
(B28)

= ANE

From these two equations we obtain

-IA = AN (B29)

or, on setting B = @-IA

'YB = $BN (B30)

Let uk NUk) denote the kth column of A(B) then we can replace

Equations B29 and B30 by
I -1

Y D uk = nkuk (B31)

and

T U k = nkDUk (B32)

for k=l, .... ,n. Thus in the first method of this appendix the determi-

nation of the rk's was formulated as a problem in determining the roots

of a polynomial equation, Equation 80. In this second method, the rk 's

are displayed as eigenvalues of the matrix Y-I or of the generalized

eigenvalue problem, Equation B32. Of course, here too the determination

of the rk's could be reduced to the determination of the roots of a

polynomial equation.

Examination shows that the two methods use, or can use, exactly the

same data. Since the eigenvectors are not unique we have no assurance

that the first component of the vector satisfying Equation B31 is the
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ak of Equation 81. It frequently suffices to know the ak to within ak!

multiplicative constant. Of course, once the nk' s are known, the matrix

E is known. Hence, if E is invertible, we have from Equation B26 an

equation equivalent to Equation B13 and thus the ak's are determined also.

In the practical situation in which one encounters Equation Bl, x(t)

and ak are m dimensional vectors and n = 2m. The Equation BI can be

written as

x(t) = [a1 ... an]e(t) (B33)

Here [a1 ... an], denotes the mxn matrix whose columns are the m

dimensional vectors ak, and e(t) is the n dimensional column vector

whose jth component is exp( t).

Again, setting y(t) = x(t+h) we have

y(t) = [aI ... an]Ne(t) (B34)

or

y(t) = [nla, ... nn a n]e(t) (B35)

Lastly setting z(t) = y(t+h), we have

z(t) = [nla I ... nn a n]Ne(t) (B36)

In block form we have from Equations B33 and B35Fx(t)1 ra
xIt = a e(t) (B37)

LY(t)J Lna ... 1nan

and from Equations B34 and B35

L (t+h) a,1 ... a n Ne(t) (38)
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Denote the matrix in Equations B37 and B38 by A. If A is nonsingular

then Equation B37 can be solved for e(t) and we have

y(t+h) ANA- 1' t2 (839)

y~t+h) Ly(t)]

Thus, the n-dimensional vector function

z(t) : 
(B40)

y(t)

satisfies the system of difference relations given by Equation B39.

Equation B39 is of the same form as Equation B23. Hence, as we have

noted, the functions z(t) satisfying Equation B39 are of the form

uexp(At) where q = exp(Xh) satisfies the condition

det[ANA -- nI] = 0 (B41)

and the vector u satisfies

[ANA-nI]u 0 Q (B42)

That is,

ANA-Iu = nu (B43)

Yi is an eigenvalue and u is The corresponding eigenvector of the matrix

ANA

The matrix ANA - l of the system Equation B39 is not known. If the

vectors x(t), x(t+h) and x(t+2h) are known for n values of t,

ti < ... < tn , then, as above, we can determine the system matrix

ANA T- and it remains to solve the eigenvalue, eigenvector problem,

either Equation B31 or Equation B32. It is clear that one immediately

obtains the eigenvectors satisfying Equation B31 from those satisfying

Equation B32. It is also clear that the eigenvectors so obtained are

not necessarily identical to the columns of the matrix A in Equation 837.
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We have described a procedure leading to an eigenvalue-eigenvector

problem for the determination of the complex frequencies when x(t) is a

scalar and also when x(t) is an m-vector and n m 2m. This same procedure

can be used when x(t) is a 2-dimensional vector, n is even and n - 4.

The details are so similar to those given above that we shall not repeat

them here.

Examination of the two methods of this appendix shows that they use,

or can use, exactly the same data in the scalar case. When x(t) is an

m-dimensional vector, the first method requires 2n readings plus n

reading for each additional component. The second method required n
2

readings to determine P and n additional readings to determine Y. Thus

when x(t) is an m-vector the two methods use essentially the same data

also. In a similar fashion we note that it takes 3n-2 readings to form

D and 2 additional readings to form T when x(t) is a 2-dimensional vector.

Exactly the same amount of data is required by the first method.

If, in Equation Bl, some of the coefficients ak are taken to be zero,

then it is clear that the determinant of the matrix 4 vanishes. Or, in

other words, there are fewer ak and Xk to be determined than we have

allowed for. Thus, the vanishing of the determinant of 4 is a test for

determining the number of terms in Equation Bl. Evaluating the determinant

of a matrix is usually avoided, if possible, and in numerical work a

computed zero is rather rare. Hence, the vanishing of the determinant

of @ is usually not a good test for determining the functional form of

x(t), Equation Bl.

The process of determining the function x(t), Equation 81, is

analogous to interpolation with trigonometric polynomials, in the sense

that the coefficients are falsified by the higher harmonics. The number

of terms in Equation 81 is not specifically known. The situation may be

thought of as follows. Suppose

x(t) r akexp(Xkt) + z(t)(44)
k=l
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There is nothing which prevents one from forming the matrices P and Y

(or determining the coefficients cI .... cn, Equation B9, as described

above. However, it is clear that these quantities will be falsified by

the contribution of z(t). Equation B44 also indicates why the vanishing

of the determinant of D is not a clear cut process. Taking a larger

number of terms in Equation BI might possibly reduce the influence of z(t)

on the parameters Ak and ak of Equation Bl.

The columns of the matrix A defined by Equation B19 for the scalar

case and by Equation B37 for the case where the ak are m dimensional

vectors, represent the eigenvectors which are to be determined. Note

that these eigenvectors have a somewhat restricted form. That is, for

the scalar case, the second entry in the k th column is nk times the

first entry. Similarly, for the m dimensional case the last m entries

in the k th column are just the first m entries multiplied by nk.

This special form of the eigenvectors is the basis for the modal

confidence factor introduced in (Reference 5). Thus, how well the

eigenvalue and eigenvector solutions of Equation B31 satisfy the special

form determines the degree of confidence that the solutions so determined

represent the complex modes and frequencies of the structure. The modal

confidence factor can be used in addition to or as an alternative to the

ratio of successive determinants test.

We conclude this section with an examination of the matrices A

defined by Equation B37 and E defined by Equations B26 and B27. If

t. = t + (j-l)h for j = 29 ..., n then the matrix E can be written as

"ePn n n .n -

Clearly E is nonsingular if the nl .... Tl are all different from one

another. Now rik = exp (Akh). Let us write k = k + irk. and suppose,

for some k and j~k, rik/nij exp h( k-Xj) = 1.
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This last equality will hold if ak = aj and lh( k-0j)I 21T1. Thus

even though the AI ... Xm are all different there is the possibility of

a sampling rate for which the matrix E is singular. It seems readily

apparent that there should be no difficulty in choosing a sampling rate

which will insure that the matrix E is nonsingular.

The columns of the matrix A, Equation B37, represent the eigen-

vectors associated with a linear system of first order difference

equations. Accordingly the matrix A should be nonsingular. The

function x(t), Equation B33, perhaps more precisely, should be written

as x(t) = [cI a, ..., c na n]e(t). In Equation B33 the coefficients ck are

included in the symbol ak. Thus the function x(t) is a linear combination

of the eigenfunctions a kex PXkt. It is clear that in a particular

experiment one or more of the eigenfrequencies Xk need not be excited.

That is, those columns of A corresponding to the nonexcited Ak are

columns of zeros.

I
From the point of view of determining the matrix A and the eigen-

frequencies Xk it follows from our remarks that the set of sampled values

of the function x(t) may not be adequate for determining all the

eigenvectors and frequencies. On the other hand there is the possibility

that one has allowed for more eigenfrequencies in some selected frequency

range than are physically present.

The difficulties noted were recognized by S. R. Ibrahim, the principal

author of the method being discussed, and were treated in his papers

(References 3 and 4).
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APPENDIX C

SOME MATRIX EIGENVALUE-EIGENVECTOR CONSIDERATIONS

In this section we present and examine material which we feel is the

basis for the method of Wittmeyer (References 6 and 7). We begin by

considering the equation

[- 2 A + B] y = r (Cl)

A and B denote symmetric matrices of order m. The matrix A is real

while B is generally complex. An equation of this form represents the

dynamic equation for a system with m degrees of freedom and structural

damping.

The associated eigenvalue problem is

[-X A + B] u 0 (C2)

We suppose there are m eigenvalues X1, ... X m and associated eigen-

* vectors uI , ... . um. From Equation A12 we know the eigenvectors

satisfy the orthogonality conditions

T T (03)
ujAuk = 0 , ujBu k = 0

whenever j t k. Also we suppose the eigenvectors normalized so that

uTAu = m (real)
k k k (C4)

then

uT Bu = Xmk (C5)
k uk kk

For given r and real w2 t k for all k, Equation Cl is solvable

for y. The solution y is given by the formula

m T 2
Y = E ukukr/mk(N k  ) (C6)

k=l

It follows that

2 A + B] 1  m T - 2 (C7)
E u uk/mk.(X k

k=l
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We take as our first task the determination of the eigenvalues k

and their corresponding eigenvectors uk. In the practical situation

the known data are the values assigned to w and the excitation vector r,

and the observed responses y. However, for the present, we suppose the

matrices A and B are known also. The starting point for the determination

of the eigenvalues and eigenvectors is the observation that for an

excitation vector r = r. satisfying the condition3
uT = 0 (C8)
Ukr

2
for all k # j and for any w 2 k9 for all k, the solution y = yj is

yj = uj(u~r.)/mj(X. - w') (C9)

That is, y. differs from the eigenvector u. by the scalar factor

uT r./m.(X.
J - 2

It is rather unlikely that an r such as r. is known. However, if

X. is well separated from the Ak, for k A j and if w 2 is "close" to A.,

it is clear from Equation C6 that u. is the principal contributor to the

value of y. Thus for w2 close to X we may suppose the initial guess

of r for r expressed in the form

m (CIO)

k= k

and in particular j 0. Then by Equation C6, the corresponding y is

m 2 CI
y PkUk/(k 2) (Ml)

k= 
l

If the matrix A were known, we could iterate on the two operations

represented by Equations CIO and ClI. That is, we take

r Ay = P kAuk/(Xk - W2) (12)
k=l

then

(1) kk k 2 2 (C13)
y E Pu/A~

k= l

54



AFWAL-TR-80-3136

and so on to obtain

(n) = PkLk/(k -2)n+l (C14)

k=l

It is clear from Equation C14 that if for each value of n, y(n) is

normalized then

y(n) = yj(n) _ Const. u. (C15)

Thus for n sufficiently large, we will have

r(n) A(n)j = Ay = ojAuj

then from this rj(n ) we obtain

yj(n+l) = Mu - 2) (C16)

and from r (n+l) = Ay(n+l) we obtain

(n+2) / - 2)2 (C17)

( 33 the
We have immediately from the ratio of the vth component y (n+l)

vth component of yjfl '; that is3

[y(n+l)]/[ (n+2) - 2 (C18)
3yj 2

and so X. is known also. This is one way in which the eigenvectors u.3 3
and the corresponding eigenvalues A. can be determined.

We are going to describe now yet another way for determining the

eigenvector u. and the corresponding X.. A given vector y may beJ 3,
represented as a linear combination of the eigenvectors uk. Thus

m

y= E nkuk (C19)
k=l
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Then we readily establish that

r = [-w2 A + B] y
(C20)

E k nk(Xk-W2) Aukk=l

For this second method we start with an initial excitation vector
(0) 2 2(0r and two frequencies, w and 2 close to Xi" Again supposing r(0)

represented in the form
r()  PkAUk

we have

y(0) = [_ 2 A + B] I r(O)

m PkUk/(k ) (C21)

by Equation C6. Take

"(O) = [_ 2  A + B] y (O)

m Ak " W (C22)

E Ok  2 auk
k=l Xk -

by Equation C20. Now take

r(1) r(0) .(O)

m 2 2 
(C23)

E - PkaUk

k=l Xk " W

Considering the computations indicated by Equations C21-C23 as an

iteration step, we have after (n+l) steps

(n) m R2 .2)n (C24)y E 2)n+l PkU~k

k=l -Wk
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If the A k are well separated and if

2 
2 l

1 (C25)

then obviously y const. u. and X. can be determined in the same3 3
fashion as above, Equation C18. In general, the equality expressed by

Equation C25 is not satisfied. In this event some normalization of y(n)

will probably be required with each iteration step. The results obtained

by assuming Equation C25 held are not altered however.

In the methods discussed in this appendix up to this point we have

assumed that the eigenvalues are well separated. Now we consider the

case of two close eigenvalues, say A. and Aj+l" We consider, again, a

constant vector r. satisfying the condition uTr = 0 for all k t j.k j
Thus if we excite with r. and frequency coj close to A. we obtain

YJ = (uj T rj)uji/Mji(Xji _ Wj2) (C26)

Similarly, if we excited with the same r. and a frequency coj we obtain
T 2

(u. rj)uj/m.(Xj - ) (C27)

From Equations C26 and C27 we obtain2 3

Yj - yj (Xj )/( - U 2j = yj - pyj = 0 (C28)

Now suppose we have linearly independent vectors r a and r b and that

r. ara + brb (C29)

It follows, because of Equation C6, that the excitation vectors and

frequencies ra , w., rb, W and rb, Wj will determine response vectors

Ya' Yb' ;a and Yb respectively. It follows also, from Equation C29, that

yJ = aYa + byb (C30)

yj= aya + byb
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From Equation C28 we have the relation

b b] a (C32)

i= [Ya' Yb] + P[Ya' Yb]  [b]

from which we have finally

r aT 1 y a' y b  + P ra]IYal Ybj [1] 0
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APPENDIX D

DETERMINATION OF MASS, DAMPING AND STIFFNESS MATRICES

In this section we want to consider the problem of determining the

mass, damping and stiffness matrices directly from experimental data.

However, first, for completeness and understanding we examine the

problem of solving systems of linear equations, the idea of a generalized

solution and of a pseudo or generalized inverse.

Let A denote a real symmetric matrix of order m. For each such

matrix A there is an associated set of m real numbers, A, .... Am and

a linearly independent set of vectors uI, .... urm which satisfy the

conditions

Auk = Akuk
(Dl)

T T
u.A = Xju T
3 33

and

T
uu k  jk

If we set

U =[uI ... um (D2)

then clearly

uT U I = UUT (D3)

and the matrix A can be written in the form

A = UAUT (D4)

where A is a diagonal matrix with the k 's along the main diagonal.

The properties of the matrix A as an operator are readily apparent

when A is expressed in dyadic form. Thus, if we consider Ax, then we

obtain from Equation D4 the following representation for the matrix A

A : UT + ... + XmumuT (D5)

I 9 mm
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From Equation DS it is clear that the range of A is the space spanned by

those vectors uk for which Ak 0. It is clear also that A is 1-1 on

the range of A. Hence, if the range and domain of A are the same, that

is, if Xk ' 0 for all k, then A exists and

-I (1 1 )u u
T + ... + (1/x )UluT (D6

Let N1 denote the set of values of k for which Xk t 0 and N0 the

set of values of k for which X k = 0. From our remarks above, Ax = b

has a "strict" solution if and only if b lies in the range of A. Now

b lies in the range of A if and only if

uTb = 0 (D7)

for all k in N0. Thus if b satisfies these solvability conditions then

a solution to Ax = b is given by

x (I/Ak)Ukukb (D8). kEN1

If we set

y = x + E CkU k
kEN 0  (D9)

then Ay = b also and

""I > 1xil (010)

Even if b does not satisfy the solvability conditions, we can

still compute an x by means of Equation D8. Then

Ax = T ub
keN I ukuk

and

b - Ax = U uTb 
(D12)

kN 0
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Then for any y whatsoever

b - Ay = E Cku + E uku b (Dl3)
kcN 1  

kEN 0  k k

It follows from Equation D12 and D13 that

l1b - Ayll > 1lb - Axil (D14)

Set T
kA' k kk (D15)

AI is called the generalized or pseudo inverse of A. We have seen that
I = -l1

if A k is not zero for any value of k then A = A . If the equation

Ax = b has solutions then x = Alb is the solution of least magnitude,

Equation DIO. On the other hand, if Ax = b has no solutions then x = Alb

satisfies the equation Ax = b as well as or better than any other vector y

(Equation D14).

We have characterized the generalized inverse for a real symmetric

matrix A. Next we want to characterize the generalized inverse of an
T

arbitrary real (m x n) matrix A, where m _ n, and of its transpose A

To achieve our purpose we consider the matrix A TA.

Now the matrix A TA is real symmetric and of order n. Hence there

are real eigenvalues ' ..... In and a complete orthonormal set of n

dimensional eigenvectors uI, .... un. It follows from the equation

T T TUkA Auk = Ykukk = (D16)

that Fk O. Set Xk = " > 0 and set

Vk = (I/Xk)Auk, if X k 0 (Dl7)

vk Akuk:0

if k 0 0. One readily shows that the vkl for k in N, constitute a

set of orthonormal m - dimensional vectors.
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We obtain from Equation D17, regardless of the value of A ks

A[u, ...'  Un]  = [vl ... , vn]A (D18)

From this equation we infer that A has a representation

A = v kVkuk

k :NI  (DIg)

then, as above, we take

AI = E (l/Xk)ukVk T

kEN I  (020)

We have from Equation D19 that
TT
AT  k u k k (D21)kEN

l1

and hence

( VkuT (D22)(AT ) = (1/Ak)
k N

In a manner similar to the above one can obtain results of the same

nature for complex matrices.

We now describe a rather simple and obvious approach for determining

the mass, damping and stiffness matrices. In general this procedure

fails in practical situations and hence is really no method.

The steady state response of the system of equations Mx + Cx + Kx = f

to a harmonic excitation f(t) = r exp (iwlt), r a constant vector, is of

the form x(t) = y exp(iwit) where y is a constant vector. If for k = 1,

m we take r equal to the unit Cartesian coordinate vectors

respectively we obtain the matrix equation

2

[-w, M + K + iwlC] [y, "'Ym]  I I (D23)

62



AFWAL-TR-80-3136

Since w, is not a characteristic value we can infer that the matrix

[Yp ... ' YMI is nonsingular. It follows then from Equation D23 that

2 MK Rey I  ym]- I  (024)
-W 1l M + K = Rey, ..., Yl D4

and

IC = im[yl, ..., ym]-  (D25)

If we repeated the process for w = hi2 then we would have another equation

of the form of Equation D24, say

2M + K = Re[z, ..., z -(26)
2

The Equation D25 gives the damping matrix C and Equations D24 and D26

determine the mass and stiffness matrices. It comes as somewhat of a

surprise that the M, C and K determined by this method are not very good.

Of course, one immediately concludes that the matrices [y, .... ymI and

[zI, ..... zI must be ill conditioned. If one looks at Equation A34 or

Equation A38 of Appendix A the reason for the ill conditioning becomes

apparent. Thus w l will be close to Aj say and for k = 1, ..., m the

Yk will have nearly the same direction, as the modal vector uj. This

observation coupled with the limited accuracy of experimental data

explains the poor results obtained by this method.

It is clear that one can obtain a better set of spanning vectors

[Yl ..... ym] by a judicious choice of frequencies, w, .... ' m"

However, the resulting set of equations are more complicated. This

method was discussed recently in Reference 8 and we want to examine the

method here.

In Reference 8 it was assumed that the mass matrix M was known. It

is instructive to consider first that all three matrices M, C and K are

unknown.
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Let Yk exp (iwkt) denote the steady state response to the harmonic

excitation rk exp (iwkt), rk real. We have then the equation

_ML 2 + K + iCkYk = rk (D27)-kY k  Yk +'wy

Set Yk = YRk + iYIk" Then Equation 027 can be rewritten as two real

equations

M(-kyIk) + KyRk + C(-wkylk) rk

2 =(028)

M(-wkylk) + KYlk + C(wkYRk) =

Now let us suppose m, the order of the matrices M, C and K is even

and set p = 3m/2. Also, set

T 2 T T T
k k = -kYRk V "wkYlk]

2 2T T T (D29)
Yp~k = [wkYlk ' Ylk' Wk~k

For k=l, .... p we have then the system of equations

[M K C][;,, = [r, ... rp 0 ... O] (D30)

where [M K C] is an m x 3 m matrix, [y ... Y2p] is 3m x 3m and rI ... r ,

0 ... 0] is m x 3m. In view of our remarks above on generalized inverses

we may write

[M K C] =  [r I  -. rp 0 ... O][y I  ---..

where if is not strictly invertible, then [Y1  "" Y2p 1

denotes the appropriate generalized inverse of [Yl .. Y2p ] "

Let us observe that if any row of the matrix [r1 ... rp 0 ...0]

consists entirely of zeros then the same row of the matrix [M K C] will

have only zeros. It follows that the rI, ..... rp should span an m

dimensional space. Alternatively, it follows that the system determined

by the matrices M, C and K should be excited at least once at each station,

if we are to avoid a row of zeros in the matrices M, C and K.
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For the case where the matrices M, C and K are of order m (i.e. for

a true m degree of freedom system) it is possible to choose the amplitudes

r and the frequencies wk so that the matrix [Y I. p has a strict

inverse. That is, in principle it is possible to recover the matrices M,

C and K from experiments. For the practical case, however, many of the

points at which one observes the response to an excitation are not

suitable points for exciting the structure.

For the reasons just mentioned determining the matrices M, C and K

by the method represented by Equation D31 has very limited applicability.

The situation is quite different if the mass matrix M is known. In this

case set

k Rk9 kyk~ (D32)

;T T T
dm4k = C1k' kyRk~

and

r k = r k + 2 Rk

^ 2
rm+k = kMYlk

Then for k=l, .... m we have the system of equations for the m x 2m

matrix [K C]
* A - -

[K C][y, Y2m : [r ] (033)'"'" 2m3 = l ' "'" r2m3

The vector rk in the expression r + W2 c

rk kMyRk can be the same vector for

all values of k. That is, if the matrix M is known then exciting the

system at a single well chosen station with a set of well chosen

frequencies wl ....' m the matrix [Yl . . y2m ] will be strictly

invertible when the eigenvalues Xk are well separated.

If for some value of k, Xk is an eigenvalue of multiplicity greater

than 1 then it is clear from Equation A38 that the matrix [Y, ... 2m ] '

obtained by exciting the system at a single point, will be singular.
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Suppose the eigenvalue Ak is of multiplicity p and for simplicity

suppose also that Xk is the only multiple eigenvalue. In this case we

need p suitable points at which to excite the system. (Even though p

excitation points are required, the system is excited at only one point

at a time.) Then for near resonance frequencies w.l ... S m - p+l we

should, at least in principle, obtain a matrix [y I "Y] which is

strictly invertible. For the frequency wk which is close to the

multiple eigenvalue Xk the system should be excited at each of the

p excitation points, one point at a time.

Thus corresponding to each multiple eigenvalue we need a set of

excitation points equal in number to the multiplicity of the eigenvalue.

The same excitation points, if suitable, may be used for different

eigenvalues. We believe a similar procedure shoud be followed for close

eigenvalues also.

Set Y R = [Y R1 - Y RM]' YI = [YIl .... YIM 1 , R = [r] ... rm ] and

let 0 denote the diagonal matrix with diagonal elements wk for k=l, ... , m.

Then Equation D33 can be written in block matrix form as

KY R - CY IQ = R + MYRQ2

(D34)

KYI + CYR
5 = MYI 2

If we multiply Equations D34 (on the left) by M- l we obtain a system of

equations for the transformed stiffness matrix K* M-IK and damping

matrix C* = M- C, namely

K*YR - C*YI Q = R* + YRQ2  (D35)

K*YI + *CYRR = YI
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If, for example, we multiply the second of the Equations D35 on the

right by YIIY R and subtract the first equation therefrom we obtain

C*[YR QYIlYR + YIQ ] = YI Q2 - R* - YR" 2  (D36)

Once this equation is solved for C* the value so obtained can be used

in either of the Equations D35 to determine K*. A procedure of this kind

is probably preferable for determining the matrices K and C or their

transforms K* and C*, to solving Equation D33 for the matrix [K C], for

example.

We have examined the method (Reference 8) primarily from the point of

view of an evenly determined system. If the systems Equations D33,

Equation D34 or Equations D35 were over or under determined then the

methods described at the beginning of this appendix could be used to

determine matrices K(K*) and C(C*). It should be clear from our remarks

above that even though the number of experiments exceeds the number of

* unknowns we do not have, necessarily, an over determined system. Once

the matrices K(K*) and C(C*) are determined one can calculate other

quantities of interest as described in Reference 8.
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Figure 1. An Example of an Element of the Frequency
Response Function Matrix

Graph in a comnlex plane of the function

W(W) = (W) + ifl(W) = Z [bk/(iW-Xk ) + 6 k/(iW-Xk)

The characteristic values Xkand the coefficients bk are given in

Table IA. The boxes are the values of w(w) for the frequencies listed

in Table lA.
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14 ww

12

to.

i P

Figure 2. Graph of the Magnitude of w(w)
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6I Arg [w (c)

Figure 3. Graph of the Argument of w(w)

-I

w 5.2

wA = 4.7

Figure 4. Graph in the Complex Plane of &(w) + ifl(w) =W(W) b 4
(Ow 4)
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'UW

'44.7 5 5.2 6

Figure 5. "Upper Curve" -Graph of Iw(w)I "Lower Curve"-
Graph of Iw(w) b 4 -W )
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'4 6

b 0.866025404 + 0.5i b4 0.866025404 -0.5i

b 4 = 0.866025404 -0.5i b 4  -0.866025404 + 0.5i

Figure 6a. Graphs of w(w) for Four Values of b 4
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322

'4 4 2'

b 4  n.866025404 + 0.5i1 0.866025404 -0.5i

12 4 21
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TABLE IA

DEFINING PARAMETERS, FUNCTION VALUES AND TRUNCATED VALUES
b = 0.866025404 + O.5i

cNVCTERISTIC VRLtES A

COEFFICIENTS bk

-t 73648±799E-f 9. 84877531E-Oi 3.4282843-ft 9.356926219-f
9. 3969262i9(-G -3. 42W28439(4t &. 668254849-Oi 5. ON N -a

-7.66844443E-ft -6. 427876198(-f -9-396926219E-f1 3. 4282843k-ft

FREQUENCIES w 6( p

-3. 88880@M+00 4.673294 -3.3488999(8 7 4

-239389 1 1 12697174Wa f 166966

-t 669958191E4 -3. 623276959(49 -t 48wmo -3. 628 80
-4.715254299(49 -5. 2232998-(4 -4. 71.989896( -5.20N -f
5. 9972194-ft 5. 973768837+08 5.90O -ft 5. 480M+
7.6i486i42S49@ 3. 8421i8339(490 7.619989699(4 3. 486W48

4.83893341489 -3. 820587362+00 4.934880 -3 28M 48
-a 44@41139E48 -7.779925282(41l -2 4469686949 -7.789 41-0
-i 7i45i3846E49 I169627699E49 -t 7188869949 31 68O 40
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TABLE 1B

COMPUTED DEFINING PARAMETERS FROM "EXACT" FUNCTION VALUES

flIER OF ITERATIOI6=- 12

RADIUS OF DIFFERENCES 3.64ii8264OE-O8

COMMiIE CIW TERISTIC YALLES

-t 256986648-Bi 3. 999999998E400 -t 966938E-Oi 4.999999996E48
-a 999m 79-01 9 9900 u0E -a memsa6-ei i i oo~

CIffITERISTIC VALUE DIFFERENCES

COIPJTED COEFFICIENTS b

-i 736481367E-Oi 9. 8487T39E-ei 3.42SOM786E-Oi 9.396926135Efi
9. 396926567E-i -3.4208i388Efi 8. 66W5i62E-8i 5. 0WSSISE-6i

-7. 66944444&E-6 -& 4278?5093E-@l -9.39692626E-r 3.42U11491E-4i

COEFFICIENT DIFFERENCES

-4. i29i88888-0 -8.580M i -2 7022989e-M 7.524899989-09

9.778888988-iB -Z BflBSSS-* 5. 69o -W -6. 90N -8
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TABLE 1C

COMPUTED DEFINING PARAMETERS FROM TRUNCATED FUNCTION VALUES

WO OF ITERRTIW45=- 12

RIUS OF DIFERENCES 3. 62K96994*4

tOIPJ W lIRTERISTIC VALUES
x

-t arn~e± k £ 50936940 72aM-2 1 9999999 4%
-1. 248179243E-ft 3. 9999991S74S -9. 98141928E-U I. 97379ff46
-a 9emena-ei 9. Usi596984 -i 959952124E-ft i 8M759 4 fThU

flWW1ERSTIC VOLUE D[FFERENCES
a Wsfl75mK-m -i 6ieAiM-e 7. 245855M9-e -i gS4einuE-e

-t 8267578K-N4 9. 965276689-65 -t 8589fl2-44 -a 737W63S-W
-ti129812368E-03 -L 59869E-63 -4. 7975699K-N 5. 219153UIE-

COIJTE COEFFICIENTS b
k

-i ?44831947E-Oi 9.8429327K-el 3. 42658437E-Oi 9. 3892295G-tk
9. 375117094E-Bi -I 402454944-9l & 642*05451E-t. 4. 9?456.1J-ft
-7. 6523i8548-61 -' 3764092SE-6i -9. 396866391E-41 I 39WS933E-t

COEFFICIENT DIFFERENCES

S. 34926675K-N a 7942509"EK-4 -6. 38266732KE- 7. 6966682KE-N
Z 188928584-83 -t 774648649E-03 t 78485886-03 a 5439983E-6
-8 125M864E-4 -5. 14?76?3E-43 -1. U6tBlE-63 Z 41649?28-43
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Ain

Figure 7a. Graph of w(w), Coefficient b4= 0.866025404 + 0,5i
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12

+-N.

Figure 7b. Graph of Iw(w)I, Coefficient b4 0.866025404 + 0.51
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TABLE 2A

DEFINING PARAMETERS. FUNCTION VALUES AND TRUNCATED VALUES
b 4 =0.866025404 - 0.5i

CHARCTERISTIC YALLES X

-tL mfeebh8E-e± t+0 -85 - . 80@
-J- 250998888-f 4. 90 a 0 -. seo K5 W mI

COEFFICIENTSb

-I- 73648i79E-8 9. 8487759-81 3. 42828143@-El 9 3%926218E-&
9.3969262i8(41 -3. 42928438E-81 & 6682548-ft -5. soemf

-7-604444WB-El. -6. 42?876i88E-81 -9. 396926218E-t 3 42829438E-4
FREQUENCIES W 6+p

I 362888860

a 616281. N8686i68E-8i a

-i.86428925E+0 8698 -3. 87090@WVE08 -t4896 4

-4. 82866543(48 -5.24797i842-81. -4. O W4-.206Mf
1. 828485894(46@ 5 068988458(48 t 21.05 088 4
8. 2623628840 3.816812954E(4 8. 208K01 ieml
4. 948424674* -5. 89262483E(48 4. 6 -5ftmW4
I. 369611363(41 -5.8L9626286E(48 t 8M -f -. ftes m

-a 6OM97172(48 -7.82968936WE-El -2.+8 -. 809 -f
-t 814835377E.08 3.16748794X+08 -i 8166 WsEW+ 3. IGI 48
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TABLE 28

COMPUTED DEFINING PARAMETERS FROM "EXACT" FUNCTION VALUES

iCIERO IAIf 1WW16 U

RADIUS OF DIFFERENCES 4.889709@W-04

WOWUTE CTRRISTIC VALES

-1. 25890844E-O 3. 999999997E48 -9. 999999799E-C 4. 99999999E4*

OHRCTERISTIC VALUE DIFFERENCES
-i GIS9USSE-09 - 53 O -0 2Z 792WUUE-iS -3. ISU8 UIE-U

COWUTE COEFFICIENTS bk

-i 736481333-ei k 9. 84887T5H9E-i I 42U.762E-4i 9. 39I6 E-M
9. 396926619E-ft -3. 42828343E-& & 66625154-ft -4. 9999978-ft

-7. 668444461-4i -&i 4278Th89-4 -9 3U926273E-ft I 42Ut5U-ft

COEFFICIENT DIFFERENCES

-4.4659U999E48 1 9718688UE4 -3. 3ISSSUU-E 6. 441UU@M-0

I 4SUUUE-f -Z. 6?60 -w &317S6961E4 -7. 2EUUIUE-4
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TABLE 2C

COMPUTED DEFINING PARAMETERS FROM TRUNCATED FUNCTION VALUES

HUH0E OF ITERATIONS= it

RAD)IUS OF DIFFERENCES 4. 1122 flKE-OG

COWUTE CHARACERISTIC VALES
Ak

-t. 7498092IAE-8i i. i99993i65E4S -8. 499958878E-02 3. 6U89968Ee4B
-i 252792343E-0i 3. 999798968E88 -9.978799Q77E-62 5. OM7?94E+N
-3. 9815193-Bi 9. 698948480e -2. 9865376E-Oi £ 899?454E~i

DIWRACTERISTIC VLUE DIFFERENCES
-t 90788510E-%5 6. 8947466UE4 -4. =157@66-07 -9.49682708@E-05
2Z 79234,3469E-84Z 02.SU4ESE-4 -2.926S7231E-44 -t 7?75hI-04
. 535i8324EE-ft -6. 948036UE-04 6. 15369O68-85 5.254529E-P

COWUTED COEFFICIENTS b

-t 744i82864E-li 9. 82i5422i2E-ei 3. 4283i5832E-Oi 9.385i52696E-ti
9. 4825469iE-8i -3. 4i3I6353E-Oi 6. 62719575-6i -4 96.t49E-Oi

-7.662658%S5-t -6.398963351E-Bi -9. 392iM33E-8i 3.40352372K

COEFFICIENT DIFFERENCES

7. 62i083798E-64 Z 653531789E-93 -8 1I440i538E-04 i i77352994E-0
-5.6i4Thi229E-04 -6.8338765iKE-0 3. 3882779E-83 -t 9538587-0
2Z 214534748E-04 -Z 897274887E-83 -4. 89327664@E-r 1. 667779S66-4
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Figure 8b. Graph of Iw(w)I, Coefficient b4 = 0.866025404 - 0.5i
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TABLE 3A

DEFINING PARAMETERS, FUNCTION VALUES AND TRUNCATED VALUES

b 4 = 0.866025404 - 0.51

OWCTEISTIC YAMl

£CEFFICIENTS bk

-L 73648V798-8i 9. 9887Th38-8 I 42828438E-8 9. 3992621iE
9. 396926211-O -3. 42829438E-ft -8. E68E-6 -5. esoo -f

-7.6684444 38E-fi -6. 42?Sl6iGUE-M -9.39692621E-t 3I 428261438-U.
FREQUENCIESw wp6

-3. 89876iE48 4. H0W134948-68 64

-1 9985113CC0 Z 27836920ECC -3.8396U8NEC z 2TUUUUE4S

-2.82i46534E40 -a. 5283644-ft -4.2. 68UI48 -a 2MO -f

i W79X+8 .860"E+ t0169W44 4878844



A F W A L -T R -8 O -3 1 3 6 

T B E 3

COMPUTED DEFINING PARAMETERS FROM "EXACT" FUNCTION VALUES

PNlfER OF ITERRTIIS-- i2

WIDIV5 OF DIFFERENCES 3. 974336422E-%9

COlflJTED f2IrATERISTIC VALUES

ti 49997EO k i200M 0 -8. 58099836-92 3. 4
-i 249999904E-Oi 3. 999999996Et00 -1t 96098944-9i S. 88O 460
-3. 96699995E-0 9. soooo 9 -t 988o -81 t 1 em 41

CHAfKTERISTIC VRUE DIFFERENCE

-t 55366W-09 4. 148969 8 4. 43380@M99-" -4. i5GSSSSS-09
4.516666E9 -6. -to -4.208I -ii i 666W -is

COPPUTED COEFFICIENTS

- 34i2EK9.848817401E-8i 3.428291~gm-f 9.396326481E-0
9.396926i9iE-01 -3. 429209PE-Oi -8.6&7542i-9 -4. 999999872E-%
-? 668444628E-8i -6 4278N6i92E-ei -9.396926218E-1 I. 4282iE-81

COEFFICIENT DIFFERENCES

t 85708W6-" -3.52648896E-88 t 753489999-8 -i 282999966-9
1. 896269W8-M 9.22796699E-89 4.6088 -ii 9. V9998UE-1
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TABLE 3C

COMPUTED DEFINING PARAMETERS FROM TRUNCATED FUNCTION VALUES

SlIER OF ITERRTIONS-- 12

R~lIUS OF DIFFERENCES 3.989296125(48

COWUTED OWTERISTIC VALLES

-1 455 - k 1. i59991.4E48 -& 5i968758E-8 3,08129540
-t 251958584-O 4. 8887934JE480 -L 683142094E(4 4. 99953749E(
-2 983979899-6i 9. 8883954E(48 -t 9979KW8-8i t 999979E41

CICTERISTIC VALUIE DIFFERENCES
-i 494291628(44 9. 98868i88-m £ 66674961(44 -9. 2924988E-e
1 05858424@E-04 -t 7934272@@E-04 3 1426935W6(4 4.49flssU0E-04

-L G82lsbfi-e3 -. 349541366-04 -a 69329241-P a 491796666(4

COIFIIED COEFFICIENTSb

-t 7387781'22E-81 9. 836653566E-e 3.438151793(41 9.393933356(41
9.38166629(4 -3.41.8689638E-B1 -8. 652325784E-81 -4. 997842=5E4

-7.636u56728E-e1 -6. 3776687E-f1 -9. 37472655-91 3. 421273877E-ft

COEFFICIENT DIFFERENCES

2Z 29694172SE-84 £ 862362966E-03 -9 956362666(44 a 952852436(4
i 53259S69-03 -t 512399766(44 -7. 928256366-8 -Z 15?444fl8E-8

-2Z 438776223(43 -5a 87%6138E-63 -a 228565692E-03 -t 671646896E-P4
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1'4: lw(w) I
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Figure 9b. Graph of Jw(w)J, Coefficient b4 0.866025404 0.51
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TABLE 4A

DEFINING PARAMETERS, FUNCTION VALUES AND TRUNCATED VALUES

b -0.866025404 + 0.51

CHIVCEIST1C YIES x

COEFFICIENT bk

-i 73648178K-ft 9. 8487h38E-fl 3I 4282843E-ft 9 396fl21IE-ft
9.3969262J.S-81 -3 4292843kE-f -8. 66544k-ft 5. esm -ft

-i 669w443kE-f -6. 42787619-ft -9 3969262k-ft 1429284W@-ft

FREQUENCIES w pwp6

4. 1688@M77108 4. 515831E8 . 4 . 188U

-t 823472(48 -. 3807404W- 4O-B4

-4 729927E+00 -Z 19974821E-ft -4.7288888848 Zi 18888888E-f

47 372817E480 3.146317348 7. 48.18888N68. 9888(48
3t 967826556E08 -6. 6892377448 3. 4880mo -6. 8 48
5i 73169k-ft 3. 27488453(48 5i -ft86 +6 -3. 278888

-4.7829079E+00 -a- iM424E-f -a. 4898848 -a 5888888-ft

A. 71%776K4(08 3.55838715(48 -i 71888888948 1 S8888848

89
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TABLE 4B

COMPUTED DEFINING PARAMETERS FROM "EXACT" FUNCTION VALUES

NEER OF ITERT!IS= 12

RWVIUS OF DIFFERENCES 4. 384594668E-88

COWUTE OffiCTERISTIC YVEJES

-t 74999997SE-f £ 2998998E418 -8. SUSUWem-f 3. UsSSUS34S

OCT~ERISTIC WRLUE DIFFESNCE
-a 99±f080K-"9 -9. 1598686E-89 2Z 927269699E4 -1 W218UE-0f

a 5879669U-89 -i.8N EN9208M 6 - loe -

COWUTE COEFFICIENTS

-i 736481184-t b 9. 8488749?E-8i I 4262662E-ft 9. 39692611-fl
9. 39692647SE-ft -3. 4282S86E-t -& 66825418-ft 5L Sms7e-ft
-7. 668444617E-ft -6. 42787682BE-f -9. 396926256E-t. I 42831472E-ft

COEFFICIENT DIFFEENCE

-a 68338888-U -i.838EW6788O -0 Z63o -
£ 87i88888-W -8. t388888-8 4. 639886881-6 -1 9 IU18 k-W
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TABLE 4C

COMPUTED DEFINING PARAMETERS FROM TRUNCATED FUNCTION VALUES

KME OF ITERATIWNSm 1.2

RRflUS OF DIFFERENCE 4.2637738E-68

COINUTED CIWTERISTIC YALJE5

-i ?4t 8F8 i k t 26633221E+66 -8. 49662859-fl 2 99997494&+08
-t 24939216@E(41 4.666878665(48 -9 976811942E-02 4.999918559E+%
-a 99724569-8i 9. 6686426W48+9 -1. 9695362M41- l 899948277E4C.

OWTERISTIC YMI[E DIFFERENCES
-i 12478995SE44 -3. 83224866(4 -3 371641216(45 Z 565405686(4
-6. 878463566(45 -7.866902686(4 -Z 39886579@E-4 8. 144676866(4
-Z 7549649SK-04 -4 428553566-64 -4.637282566(4 5.172342IUE-44

COfTED COEFFICIENTS

-i. ?273467l1E-61 9. 83i95897?E-81 I 4188825W-K4 9. 35671669-ft
9.374784685E-fli -3. 414593555(41 -8. £4835512 -6 4. 9754634f-ft

-7.668864915E-6 -6. 399448237(41i -9 3828e2-ft I 4165438L7E-41

COEFFICIENT DIFFERENCES

-9. 14i86852E-64 i 6i1855279-63 t 3188738W6-04 6.215516516(-4
2. 214152546E-63 -5. 687871i66E-04 -t 18989155643 Z 4516096K643
4.26485218(6 -2 842786338-03 -i 41.1666468(3 I 657622DE-
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Figure lOa. Graph of w(w),Coefficient b4 = -0.866025404 + 0.5i
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I w(w) I

12

'14

Figure 10b. Graph of Iw(w)I,Coefficient b 4 = 0.866025404 + 0.5i
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TABLE 5A

DEFINING PARAMETERS, FUNCTION VALUES AND TRUNCATED VALUES

6 -0.1 + 4.51

CHfMCTERISTIC WLUES x

-i ?5898886E-O3.

-i 25N09ON8-8i.-t .+

COEFFICIENTS b k

-L 73648i788E-Oi 9, 840r,7538E-81 3.428291438E-O 9.396926219E-6i
-7. 66844443ME-Oi -6. 4278761N8E-ft -9,396922iE-8i 3,42fl9438E-ft
9 392eSi8E-81 -3. 428281438E-t a 6682584E-Oi S.-f

FREQUENCIES wp+

4. i3340005+OB 3. 387i9iWE+88 41868E8

P 3739978E8 4. 67458596+68 7 386UE6 4

-2. 3145668E4* -7 57ei927seE -a4.3100@W86+00 2.700W 8
-3.412i840693E00 3.7Bi42897E+88 -t 726896688+66 7989S9UEK+
3. 5682537E+08 -3. 5878848E+68 3i 5588E + -3. 0OE0
4 i39554&8 -4. 488923E+6- 2898tt8 -

4.NITI%7EAL VALUE9~l+0 F4. LifER+0 Li.SE ?8CERIIICV@
6,i690z4-2. -6234X(62Wt 4 . -ft h. 20@NNQ

5.w344Kf .94 8+0 57ON -t5008M0
7 53739978E00 4.07458 96 .3NW+0 4 W

-2-454665604E+O@ ~ ~ ~ ~ ~ -757.8EK - 5NW8 7 -
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TBE5

COMPUTED DEFINING PARAMETERS FROM "EXACT" FUNCTION VALUES

NUMER OF ITERATIONS= 14

RADIUS OF DIFFERENCES 3. 29892758E-88

COPJTED, CHARACTERISTIC VALUES

-1. 75* W- k i. 280000W85+00 -8. 50088050E-02 3. 888 8 8
-2.999999980E-0i 9.8800084E+00 -2.88888801iE-01 t. 1 41N~e
-1 258888886E-81i 3.999Q999999E+00 -9.999999976E-82 4. 499999998E+8

CHARACTERISTIC VALUE DIFFERENCES
8.0 3888E-to -5. 268800008E-89 4.956888888-i8 -i. 638888888-89

-i. 9738&*88-89 -4. 2488OWiO-89 1. 88 o -89 2z -18
6.388888888-1 1. 1688&88-89 -2. 370888888-18 2.17800@W88-09

FO9JTED COEFFICIENTS bk

-1 ?,364814$4E-81 9. 848877649E-81 3. 42820i6iiE-81 9. 3969262iBE-Oi
-7.66844447iE-81 -6. 427875873E-81 -9.396926283E-8l 3.42828452E-oi
9,396926321E-01 -3. 428281358E-81 8. 668253986E-81 5. 888888ii3E-8i

COEFFICIENT DIFFERENCES

-3 5568888-88 -i. i8988888-88 -1. 889588888-88 A. -11
4. 125888888-89 -2. 267408888-* 7. 275888888-89 -2Z 1 0ON -89
-1.19888E8 -8. 88888-89 5. QW 00-89 -1. 12888888E-8
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TABLE 5C

COMPUTED DEFINING PARAMETERS FROM TRUNCATED FUNCTION VALUES

?4JEE OF ITERATIOI&- 14

RAIdUS OF DIFFERENCES 3. 3i9888E-4

COIPTED CHMETERISTIC VFLUES

A.72472tE-i A i999229?E+88 -8. 46748O3KE-6 2Z 999972497E40
-a 9289368E-#i 9. 880285E+O8 -Z 8931.Si?&1 t eMsizi+ei
-t 252i5394E-8i 4.08842+00 -9.969653687E-92 4. 499991346E+8

CHAVCTERISTIC WELUE DIFFERENCES
2. 234?82587E-84 7. 678381688-65 -3.259969828E-8S 2. 75626688-ff

-i 799863i6iE-63 -8. 782458'E-64 2Z 315i7i868E-M4 4.84794688W-04
Z i52948S38E-84 -8. 44823888E-85 -3. 83463929@E-04 8.65464880EW-6

CO*UTED COEFFICIENTS

-. 735835646E-ft 9. 8395453%E-8i 3. 4iZ4POOO-8i 9 385999803E-O
-7. 632716826E-0i -6. .36984i343E-Oi -9. 46i2845iiE-fi 3. 4829?9259E-8i
9 3958394?E-Bi -3.421755437E-Oi & 64i2i858-Oi 4. 9925@W52E-6i

COEFFICIENT DIFFERENCES

-6. 4637686-905 8. 532133588E-84 2. 724432- 84- t. 092720725E-03
-2. 772840382E-03 -5. 883475717E-83 4. 27838Va6fE-8 1. ?222i~i4SE-03
1. 86226738E-84 i.554887488E-804 I 904378138E-83 7. 499948586K-04
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Figure 12a. Graph of w(w),X 5  -0.1 + 4.5i
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TABLE 6A

DEFINING PARAMETERS, FUNCTION VALUES AND TRUNCATED VALUES

A6 = 0.1 + 4.3i

CHARKTERISTIC VALUES x

COEFFICIENTS bk

-1 7364$i78E-0i 9. 8673E-i 3 4262S438E-Si 9 3%9262iSE-6i
-7 666444438E-61 -6. 4278761*-ft -9.396926218E-6i 3.42828438E-8i
9 3%69262OE-8i -3.42020143E-01 & 66&2b4W4E-@i 5. OW W-Si

FREQUENCIES w uw+

c 98888866(9 3 88080WE+00

FUNCTION VALUES TRUNCATED VALUES

-4 3269?5789E+OU Z 27959*-703E+88 -4.328868988(48 a 2708@M868008
-1 448410174E+00 7 835N657684-86 -3.4000 +88 7.83898888E+68

-i. 692892469E+8@ -3. 593796572+00 -t 6966888(4 -3.590060899+00

4.0306,24787+80 3. 849963217(48 4.030000W9800 3.840 86+O

5 622342976E-91 5. i12638454E4O8 S. 600m -6 5.11 8969(4
7.492927@W8+00 4. 114696285(48 7.49888+6 4. 11888S889E

-2 459640772+@8 -7.536819215E-0i -2.4560888888( -7 50N -41
-1 72448%63iE00 3 18ii86358E+e6 -i 729089889(4 3 1 48NW~e
2 94022765(+0 -i. 453940617E400 3.94e898986(4 -1 45988889(48
4 247840727(48 -4. 952659598Q0 4.2480666689( -4. 95889886(4

INITIAL VFLIE FOR. UPPER CLOSE CWRlKTERISTIC VfLLJE
X(6. 1-2 -02 X(6,2)z 4.4

101
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TABLE 6B

COMPUTED DEFINING PARAMETERS FROM "EXACT" FUNCTION VALUES

(IER OF ITERATIONS= i5

RADIUS OF DIFFERENCES 2.928386666E-O8

COW)UTE I4fTERISTIC YfLUES

-t 500W - k I 08M3E+e@ -8 .6889835E-Wl 3.

-i. 250008"9-KI 3. 999999999E+00 -9.9999995ew-62 4. 299999E

CI*RATERISTIC WELUE DIFFERENCES

5. 97888-829 - 7708W e6788W H3 686 E

CO E OFFCET b

-1. 7364Oi548E-Bi 9. 84887Th8iE-8i 3.42928592E-Oi 9.396926292E41
-7. 66844588E-Oi -6. 427875986E-8i -9. 396926259E-0I 3. 429291433E-ft
9.3969264i@E-Oi -3.42929325E-Oi 8. 668253875E-1 5S 9u684-e

COEFFICIENT DIFFERENCES

-2.32i30888BE-88 -5.053800@W9-09 -t 6i54899-8 8. 379699W-IS
7.845889E8 -1 144U9698E-8 4.608 %-Z788WA

-2Z 88128 E-88 -t 852598699(8 t 6529999E-88 -6. 3799699E-89
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TABLE 6C

COMPUTED DEFINING PARAMETERS FROM TRUNCATED FUNCTION VALUES

NUMBER OF ITERATIO?&= i5

RADIUS IF DIFFERENCES 2. 88237Si2E-08

COMPUTED CkfrATERISTI( VALUES

-i.?47584865E-Bi k I 2824W478+8 -8. SO5i?2644E-82 3. 8668343?E480
-2. 987863957E-81 8. 9994298i8E+88 -2.883951363E-8i t. 1i8BB 2fl+8i
-I. 258i5884E-Oi 3. 999854478E+00 -t 8u99156-Ci 4 389193887E+6B

CIWCTERISTIC VALUE DIFFERENCES
-2.49593473@E-04 -2. 4549686-84 5. i?26435?SE-85 -3.i43?25699-05
-i. 2i368426%E-83 S. 78i8Z268E-84 3. 951%63M8-04 -i 213162889E-0
I. 58848308E-85 t. 4=52280E-04 9. 9i8S64O0,9 -i. 9388699UE-64

COMPUTED COEFFICIENTS

-4 ?33584277E-8i 9. 82482385-S 3.42424i287E-0i 9. 3906671%&E-ft
-7 68?6i8289-8 -6. 399357628E-Bi -9.394357272E-Oi 3.442706322E-8i
9 3?i9S6iRSE-Oi -3. 4i889993-Oi &. 6616482S5-8i 4.97S24i475E-Oi

COEFFICIENT DIFFERENCES

-2. 897,902600E-04 2. 404854469E-@8: -4.083977693@E-04 6 259063928E-6
-~-S 283422i39E-83 -2. 85i84?2iOE-8: -a 56893826E-4 -2. 25848956E-83

2. S3702473E-e:(S -a 10233673--4 -i. 3862454@@E--04 2.4?5824?eE-t3
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TABLE 7A

DEFINING PARAMETERS, FUNCTION VALUES AND TRUNCATED VALUES

-6 0.1 + 4.21

COWrATERISTIC VALUES

COEFFICIENTS bk

-i 736481788E-8i 9.84887538E-8i 3.42#28438(-8i 9.399262i8E-61
-7. 668438E-8i -6.427876i88E-Oi -9. 39926218E-%i 3.42828438(41t
9.3969262i6(-Oi -3.428M 84-81 8. 668254848(-81 5. oesm -01

FREQUENCIES w pL

FUNCTION VALUES TRUNCATED VALUES

-4 332M89@KEtft a 28489348E48 -4.3300888M(400 2.9 N +8
-3.469381322(488 7. 884121558(48 -3. 46000@808 ? sesom l
-t- 695655567E48 -3.59848*3(4+8 -1. 698888 -3.598888888(4
-4. 727552487E48 -5. 88836228(-0i -4.728888888(4 -5. 988o -8

3,998994621E+88 4. 32259i638E+8 3 998888888(4 4.320000M88(0
.46. 8456i6763E.*@ 9.i8826881E-Oi 6 4808M O 9, 1 aon -0

5.556599425E-8i 5. 128949E48 5. -81 5. 12@88888
7 466278778(48 4.183781567E4* 7.4880 80 4. 1 @80 +0
-2 461998985E48 -? 58842972E%-0 -2.4688886( -7, -81
-1. 725776589E48 3. 182582995(48 -t 72088888+08 3. 1 48om
6 458849612E48 4.498988889(4 6.45888888(4 4.498888888(4
4. 387522938E48 -5 411184&25E48 4. 48@W+ -5.418880W888

INITIAL VAILUE FOR UPPER CLOSE CHfrACT(RISTIC VALUE
X(6, 1)= -2,900 -2 X(,) .@V W 0
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TABLE 7B

COMPUTED DEFINING PARAMETERS FROM "EXACT" FUNCTION VALUES

WWSE OF ITERATIONS- 14

RMXUSLK OF DIFFERENCES 4. 4182758i3E-M8

COWIJED OCiRATERISTIC VfLIES

-3. -t9 8NW+0 -. 0NB Ef eemo
-t 2SSOGWiE-Oi 4. 988K+0 -. 9"3EK4i99974

CJ*0CTERISTIC WALUE DIFFERENCES
2 2338G88E-09 -8.358800BOO-89 S. 425000M8-i0 -28@N -

1. 66360888E-89 -5.48 W -i@ -a 999E0 14@BW-

C OWIJTED COEFFICIENTS

-I. 73648i282E0i k 9. 848?7?99E-Oi 3.4282S688-8i 9. 3%926i9SE-t
-7. 66844567E-Si -6. 42787,5M9-Si -9. 39695-Oi 3 42S2945tE-Oi

9.396926637E-Oi -3.42B28i457E-Oi 8 660253698E-Bi 5. 8589921Efi

COEFFICIENT DIFFERENCES

-5.77&29@WO-08 -a 68690E* -88 -2 4929W- -e
i. 369%@W55-808 -2Z ON3IeeOe-8 a 544e55969-S -2. ii4OSSE4
-4 2iSSSSSE-08 2.676885E-69 3 499555555-5 -Z 8i399SWW-W
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TABLE 7C

COMPUTED DEFINING PARAMETERS FROM TRUNCATED FUNCTION VALUES

HNDER OF ITERATIOHS- i4

RADIUS- OF DIFFERENCES 4. 425460746E-O

COMPUTED CIWCTERISTIC VALUIES

-t79Qii-@ 289i3i623Et88 -8. 5&35W9f7E-A 3. U9243E+0J
-Z 99376i382E-Oi 9. 88858i63E+88 -2. O982898E-Oi I iflMi78UE.Oi
-1. 2538@3169E-01 4. 888738996E408 -9. 938i38288E-82 4.i9942784iE408

CJ*ACTERISTIC VALUE DIFFERENCES
-8.24908000@E-07 -t 3i6227488E-34 3.565927050E-805 -2.643022980E-05
-6. 23861i7538E-84 -Z 5962?888-84 2. OOS9 i2OE-84 -t 077952NK9-04
3. 88316W8EW-84 -7 3899Q76288-04 -6. i6i799OE-84 5.721598308E-04

COWPUED COEFFICIENTS bk

-i. 7487i8622-8i 9. 838335283E-O 3. 423628i1iE-Oi 9. 38567li82E-1
-7. 6371i9@49E-el -6. 43i979-0 -9. 38357i26SE-8i 3. 43583i738E-8i

I-9. 4653li4?OE-8i -3.47154233SE-Oi 8. 68462645E-Oi 5.O 33S-

COEFFICIENT DIFFERENCES

4. 23684047@E-04 9. 7422472- 84- -3. 4266?i428E-84 i.i2558283SE-83
-2. 3325)38888E-03 -t 4678±2378E-03 -t 335494526E-03 -t 563030795E-803
-6. 838525966E-83 5. i389EM-O3 5. 879139496E-83 -. 52633872@E-03
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Figure 14a. Graph of w(4,A X6  -0.1 + 4.2i
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TABLE 8A

DEFINING PARAMETERS, FUNCTION VALUES AND TRUNCATED VALUES

A= 0.1 + 4.1i

CHRRATERISTI( VfiLUES
Xk

COEFFCIENTS bk

-i. 73648178Ef-8i 9. 848@f'75301 3.42&28438E-01 9. 396926210(-81
-7.66844438-0i -6. 427876100E-81 -9. 396926210(-81 3. 4282043BE-f
9 396-92621E-81t -3. 4202$143-01- 8. 668254848-Oi 5. 8NO -81

FREQUENCIES wpw p+6

2 9000000(40 3. 100000W0040

FUNCTION VALUES TRUNCATED VALUES

-4 339114189(40 Z 29057499(+00 -4-33000008(0 2900 0 0+
-3 492994278E+00 7.948978526E+08 -3.40000(0 7.94eNmE+M0
Ai 69483161%E400 -3.58717f3504E408 -1 6 +00 -3. .008+O
-4 728921879+0 -5805550659E-8i -4. 720000000(00 -5. S N -41

F4,023397605(40 5.08745382iE400 4.0 5. 48N W00
- 08 59960767iE400 -6 55W'392991E40 8.5908NW00 -6.55008M+000

5,486969939(41l 5 128 i 4321E.00 S. 408O -0i 5. 12000000(
7 435,9@392"5E40 4. 2671 8266Et00 7.4380000(40 4.26080000(0

-2 46427818%+00 -7.48L70401E-81 -Z 4400W 00 -7 400000000-O
-1. 727038744E+00 3 i83S345650E40o -1- 72000W(400 3.1 i88 W 8
6 3241:,6%63E4@ 5 8W558487(400 6.8400 0@Ee 5.850N 0
S8204 1518(400 -5. 84W%.44E408 3. 029000E400 -5.00 4N+0

INITIAL V4tUE FOR Lf'ER CLOS-E CNARWTERISTIC ffl-JE
X'6. 1) -2 000000-0 X(6.2)= 4 ABA 800 0
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TABLE 8B

COMPUTED DEFINING PARAMETERS FROM "EXACT" FUNCTION VALUES

NMJIE OF ITERATIOS=-15

RADIUS OF DIFFERENCES 2. B56670392-E-8

CO*UTED CHARATERISTIC VALUES
Ak

-4 7588888tE-i i. 2888E*186E+W3 -8. 58888122E-02 3. 40@0W+8
-3. 0W9&0 28E-8i 9. 08WA8WE 0 -i 999999999E-Oi £. Isoem
-1. 25888854E-Oi 3.999999990E+00 -t. 8888889E-Oi 4. i88888812E4

CHARACTERISTIC VALUE DIFFERENCES
1. i14&18&38E-fr -5.6i@*E-89 1. 224488E-09 -1 23088888-89
2.79i888& 389 2. 8WW08-i -t 45808886-I8 5. -18
t 54268ee-e8 1. 836eeeaW-ee !i 9ii88886-89 -. iBISGoSem -8

COMPUlTED COEFFICIENTS

-i. 73648i394E-6i 9. 848877 685E-i 3I 42O2859i-Oi 9. 3%926388E-8i
-7.66@4445W4-61 -6 42787W1,4E-OI -9.3969262i3Z-& 3. 42828137E-Oi
9 39692154E-8i -3,428i97f904E-fI 8. 668399iE-Oi 4. 99999664E-fi

'OEFFICIENT DIFFERENCES

-3 8558888-8 -t 55178888-88 -t 613888888-88 -9.038 m-09
1- 1416@eW8E-W8 7.38388888-89 3.3fl8888E-i8 3.32408M88-8
5 68388838-89 -3.535938W~-87 4.918888WE-89 3.355788E-67
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TABLE 8C

COMPUTED DEFINING PARAMETERS FROM TRUNCATED FUNCTION VALUES

NUPIEP OF ITEPflTIONS= 15

PNDIUS OF &IFrEPENCE$S 3. 82?i45E-8

COPUTED CHFWSCTEP11I fh

-1 7588W5*E-8i i 1 2886058iE+88 -8. 498616739E--02 2. 999957827E'00
- 91-15622E-01 9. 88ii4493iEt88 -2. 861353888-ei1 i. 899998211E+8i
-i. 2Th24i342E-Oi 4. 882226E+8@ -9. 82875794E-802 4.89888774E+ee

:HAIRiCTEP1STIC \1LE DIFFERENCES
3. 68588 3t5,8E-04 -1. 685889* W-84 -1. 383268938E-855 4. 217281886-6S

-1. i86437795E-83 -1. i449A158,E-83 I. 353888440E8 i. 7BMiOSO-8
-1. 886586848E-0@3 -2.852385988E-83 -. 719242859E-03 i.191229,970E-03

COPPJTEC COEFFICIENTS
b k

-t 2294E8 9.841144826E-01 3 428238963E-Oi 9.389234399E-Oi
14 67477Ee -6. 36581358_-I- 81f -9. 38388552E-8i 3. 4267586-Oi

9. 649ii8792E-8i -3. 832885728E-8i 8. 484534854E-8i 5. 4tB%4E-8i

i'OEFFI' lENT DIFFERENCES

-7 2722&'5568-84 6. 912784278E-04 -3. 753322A88-86 7. 69i8i8?i@E-8
2~ 569f211iE-03 -6.20625928iE-C- -i. 3i2@8686E-803 -6. 54943&W88-04

-2 521925817E-02 4 126842982E-82 2. SS7i9flE3E-82 -4. i389485E-82
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Figure 15b. Graph of Iw(w), x 6 = 0.1 + 4.1i
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TABLE 9A

DEFINING PARAMETERS, FUNCTION VALUES AND TRUNCATED VALUES

CHARACTERISTIC WIUES

-L?888O-01 . --8 4.88058008W 3 88

CCEFFICIENTS bk

-1 7364817*8E-8i 9. 84775:-01 3.42828438E-8i 9. 3%9262i9E-8i
-? 66$444438E-8i -6.427876188E-81 -9.3969262±8E-Oi 3.4288439(-61
54 3%9262186-0I -3.4282814-78E-8i 8.666254040-0 5. -ft

FREQUENCIES w pw

40waw~wi@388 @E+$O
2E0 9888*8 3@88888886(4

88088808(48 3. 9888088iE+88
4 288008%W+8 4.489888888(4

FUNCTION VALUES TRUNCATED VALUES
-4 342356887(48 2. 2925e,693E+@@ A4.348080W8800 2.290689W(@8

-509428& 7. 9747182'48Et8 ?588@8@4 788894
-t 6-99i8241.E+88 -3.58%1'*9Et08 -1. 6988888948 -3. %8N 48

-4. 729693563E400 -5.0%5363316E-91 A .72888888(48 -5. -61
4 1272-76863E+88 5.66469142E48 4.1200@@W8800 5 6689 N94

E.:7415i6852E+@@ -7. 183i8567(8 6-7408W 0 -7. 0

4i9i8444E480 315758268(48 741888(0800 ~ 43189668E99
4E5389?i2E+80 -7.4683i78169E-81 460888888(4 -?. 480O -6

-1 7^4765.:656E400 3 9,4497348+00 -t 7208888888( 3. 1 48W+8
7448711571E+00 6,926368284E+00 7.40 40 6. 9200~9894W

2 QV841W89(0@ -4.859@7%48E0@ 2.62889W8(08 A 850@W+

INITIAL VA4LUE FCP. UPPER CLOSE CHARACTERISTIC YWLE
-288888-02 X(6,2)= 4.4000@ 80
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TABLE 9B

COMPUTED DEFiNTNG PA.--AMETERS FROM "EXACT" FUNCTION VALUES

NUMER OF ITERATIIS-- is

RADIUS OF DIFFERENCES 3 ii8985?E-88

COMPUTED CW#fATERISTIC VASES

-i 74999999*E-S t 208WIE.8 -8. SSSSSSIE-52 3. N666 50
-3. -fi 8. 999999999E+08 -t 999999998E-Si L isee i0
-t 24999958iE-Si 3. 999999994E+00 -9. 999998fl4E-S2 4.94999992E+0

CI*RATERISTIC VOVUE DIFFERENCES
-1. 459989-Z8E-iO -2 -i 5. 12698E-i -a 90m -is
4.6 -is8EA 5. -is -a -is0m a@ z-isN E

-4.i8lUSSSSS-S 6.2199595-0 -i Sl7ilSUS-88 a Si4659SU-U

COMFUTED COEFFICIENTS

- 341/8-t k 9. 84O77sM-ei 3.42S28472E-Si 9. 396926254E-Si
-7. 660444437E-Si -6. 427876i35E-Si -9.396926293E-Si 3. 429294i2E-Si
9. 3%924228E-fi -3. 4224iE-ft 8. 66625%92E-Si 5. 995S12727E-Oi

COEFFICIENT DIFFERENCES

-2. 24856N&IGE 5.87@@(*SU-iO -4.i6BSSSSS-8 -4. 376555556-09
6.838959959-iS 3.464008WE-8 -7.239599995Ei £ IGS9USS-09
I 981360859E-87 1. 274938999E-8 -L 902295W9-97 -1. 272664691E-56
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TABLE 9C

COMPUTED DEFINING PARAMETERS FROM TRUNCATED FUNCTION VALUES

NUMBER OF ITERPT!,YNS= 16

RRDIS OF DIFFERENCES 9 63342142E-08

CLWIfTED CHW WTERISTIC VALUES

-1. 7A72523E- xk i. 28812477E+88 -8. 586619756E-2 3. 887384E+GS

-2 987588i48E--1 9. 8e872484E+88 -Z 898582i2IE-i t. 899998291E+61
-1. 317445485E-Oi 3. 9992'473@E+8P -i. 62926i47E- 4. 6833816+E

CHRRK.TERISTIC VALUE DIFFERENCES
2. 725232W8E-05 -i. i24774288E-84 6. 619755688E-85 -7.. 38 -
-1 241.8-8,4E-O3 -7. 7248415@KE-04 5. @2i288988E--85 i. 798529961E-45
6. 744548536E-03 7. 4527838--84 2. 9261i8465iE-3 -6. 833839559-03

COWIPJTED COEFFICIENTS b

- -i. 7358A13%E-Bi 9. 839c,25@E-i 3. 423672743E-Oi 9 396274248E-t
-7. 626946842E-81 -6. 388:3GiiE-8i -9. 37867262-Oi 3. 424253723E-6i
9 37499195.*-Si -i. 878M3487E-Si 8. 6357663E--i 2. 66975543E-t

COEFFICIENT DIFFERENCES

-6. 683837.* . -0 8. 159249@E-84 -3. 47i3i2840E-04 6. 651969948E--4
-3. 34983,847E-03 -4. 748248274E-@3 -t. 825358396E-83 -4. 05229272E-64
2 193425143E-83 -2. 34i299:43E-3 Z 45183771E-03 2. 330244569E-i
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21

Figure 16b. Graph of jw(w)j, 6  -0.1 + 4.05i
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TABLE 9D

FUNCTION VALUES DETERMINED USING THE COMPUTED
CHARACTERISTIC VALUES AND COEFFICIENTS FROM TABLE 9C

COMPUTED CHARATERISTIC VALUES

A. 75822523E-ei k 286112471E+0 -8. 506619Th6E-02 3. 0007384E(4W
-2, 98?588148E-Oi 9. 68772484E+08 -28850212fE-0l 1 999968E+0l
-1. 317445485E-K1 3. 99925473@E418 -i. 62 9 47E-01 4. 65633848(4W

COMPITED COEFFICIENTS b

-1 7358213%E-8il 9. 8399i8258E-01 3. 423672743E-8i 9.390274248E-6l
-7. 66642E-01i -6. 380393617E-01 -9. 378672626(41 3 424253723E-0
9. ;4991959E-8i -i. 87890.3487E-81 8. 635735663E-6 2. 66975543E-ft

FREQUIENIES w wp6

4. 28896869(4 4. 4@668886(41

FUNCTION VALL(S WASED ON COPJTED COEFFICIENTS
AND COMPLITED CHARACTERISTIC YALUES TRUE FUNCTION VALUES

-4. 339999909%eEte@ 2. 289999988E+00 -4, 342356007E00 2Z 293566793(400
-Z 4999-99882E+68 7.969999988E+00 -3. 505942286E+08 7.974718348E(00
-t 68999997E+68 -3.5799990996E418 -i. 69961824iE4W8 -3. 5856i9989(W
-4. 726889686(4 -5. 66668685381 -4.729593563E+00 -5. 658361-
4. 1199,99996E418 5. 660000@ME+00 4. 127276863E416 5. 6646i9i42E408
6. 739999997E(4 -7. 179999497E+00 6. 74516852(4W -7.18316567@E(4W
5. 48666866E-81 5. 129999981+80 5. 45658266E-81 5.132459956E+4W
7. 418M038E+00 4.38999976E416 7.419194484E(4W 4. 315758268(4W0
-2.459999993E+08 -7. 39999938E-81 -2Z 465389712E(4W -7.468317969(41
-t. 728666685(4 3. 179999994(418 -i.727659556E4W0 3 184497348(4W
7 448666629(4 6 919999722E488 7. 4487i157iE4W 6.926368284E+4W
2.619999997E4W0 -4.8499.9999E(4W 2 6288412894 -4. 85979848(4
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in
J6

-16 -12 -BB I

Figure 17. Comparison of Values of w(w) for w(w) Computed Using
Exact Characteristic Values and Coefficients and
w(w) Computed Using the Characteristic Values and
Coefficients From TABLE 9C
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